Solutions for Math 317 Assignment #1

(1) Let $S_1 \subset \mathbb{R}^m$ and $S_2 \subset \mathbb{R}^n$ be two bounded sets. If either $\mu(S_1) = 0$ or $\mu(S_2) = 0$, then $\mu(S_1 \times S_2) = 0$ in \mathbb{R}^{m+n}.

Proof. WLOG, we assume that $\mu(S_1) = 0$. So for all $r > 0$, there exists compact intervals $I_1, I_2, ..., I_l$ such that $S_1 \subset I_1 \cup I_2 \cup ... \cup I_l$ and

$$\sum_{k=1}^l \mu(I_k) < r.$$

Since S_2 is bounded, $S_2 \subset J$ for some compact interval J. So

$$S_1 \times S_2 \subset \bigcup_{k=1}^l I_k \times J$$

and hence

$$\mu(S_1 \times S_2) \leq \sum_{k=1}^l \mu(I_k \times J) = \mu(J) \sum_{k=1}^l \mu(I_k) < r \mu(J).$$

As $r \to 0$, we see that $\mu(S_1 \times S_2) = 0$. □

(2) Let p_n be a sequence of points in \mathbb{R}^m such that $\lim_{n \to \infty} p_n$ exists. Then $S = \{p_n : n \in \mathbb{Z}^+\}$ has content zero in \mathbb{R}^m.

Proof. Let $p = \lim_{n \to \infty} p_n$. Then for all $r > 0$, there exists N such that $p_n \in B_r(p)$ for all $n > N$.

Let $p = (x_1, x_2, ..., x_m)$. Then

$$B_r(p) \subset I_r = [x_1 - r, x_1 + r] \times [x_2 - r, x_2 + r] \times ... \times [x_m - r, x_m + r].$$

Hence $p_n \in I_r$ for all $n > N$. It follows that

$$S \subset S_N \cup I_r$$

where $S_N = \{p_n : n \leq N\}$. Since S_N is a finite set, $\mu(S_N) = 0$. Therefore, $\mu(S) \leq \mu(S_N) + \mu(I_r) = 2^m r^m$.

As $r \to 0$, we obtain that $\mu(S) = 0$. □

(3) Let $f : D \to \mathbb{R}^m$ be a continuous function on a compact set $D \subset \mathbb{R}^n$. Show that the graph $G_f = \{(x, f(x)) : x \in D\}$ of f has content zero in \mathbb{R}^{m+n}.
Proof. Since D is compact,

$$D \subset I = [-R, R]^n$$

for some R.

Since f is continuous on D and D is compact, f is uniformly continuous on D. Therefore, for all $r > 0$, there exists $d > 0$ such that $||f(x_1) - f(x_2)|| < r$ for all $x_1, x_2 \in D$ satisfying $||x_1 - x_2|| < d$.

Let N be a positive integer such that $R/N < d/n$. We let P be the partition of I given by

$$P = \left\{-R + \frac{kR}{N} : k = 1, 2, \ldots, 2N - 1\right\}^n.$$

Suppose that P subdivides I into $I = \bigcup I_v$. For each I_v, $|I_v| = R/N$ and hence $||x_1 - x_2|| \leq nR/N < d$ for all $x_1, x_2 \in I_v$.

For each $I_v \cap D \neq \emptyset$, we choose a point $x_v \in I_v \cap D$. Then $||x - x_v|| < d$ for all $x \in I_v$ and hence $||f(x) - f(x_v)|| < r$ for all $x \in I_v \cap D$. Therefore,

$$G_f \subset \bigcup_v I_v \times [y_{1v} - r, y_{1v} + r] \times [y_{2v} - r, y_{2v} + r] \times \cdots \times [y_{mv} - r, y_{mv} + r]$$

and thus

$$\mu(G_f) \leq (2r)^m \sum_v \mu(I_v) = (2r)^m \mu(I)$$

where $f(x_v) = (y_{1v}, y_{2v}, \ldots, y_{mv})$. As $r \to 0$, we obtain that $\mu(G_f) = 0$. \hfill \square

(4) Show that a bounded convex set $S \subset \mathbb{R}^2$ with $\text{int}(S) = \emptyset$ has content zero. Also give an example to show this is false if we drop the convexity.

Proof. If $S = \emptyset$ or S consists of a single point, $\mu(S) = 0$ obviously. Otherwise, suppose that S contains at least two distinct points p_1 and p_2. We claim that S is contained in the line $L = \{p_1 + t(p_2 - p_1) : t \in \mathbb{R}\}$ passing through p_1 and p_2.

Let $p_3 \neq p_1, p_2$ be another point of S. Since S is convex, the triangle

$$\Delta p_1p_2p_3 = \{t_1p_1 + t_2p_2 + t_3p_3 : t_1 + t_2 + t_3 = 1, t_1, t_2, t_3 \geq 0\}$$

$$= \{t_1(p_1 - p_3) + t_2(p_2 - p_3) + p_3 : t_1 + t_2 \leq 1, t_1, t_2 \geq 0\}$$

is contained in S.

If \(p_3 \not\in L \), then \(p_1 - p_3 \) and \(p_2 - p_3 \) are linearly independent. Let \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) be the map given by
\[
f(t_1, t_2) = t_1(p_1 - p_3) + t_2(p_2 - p_3) + p_3.
\]
Obviously, \(f \) is continuous. And since \(p_1 - p_3 \) and \(p_2 - p_3 \) are linearly independent, it is a bijection. We have \(f(1, 0) = p_1 \), \(f(0, 1) = p_2 \) and \(f(0, 0) = p_3 \). We let \(q_1 = (1, 0), q_2 = (0, 1) \) and \(q_3 = (0, 0) \). Then
\[
f^{-1}(\Delta p_1p_2p_3) = \Delta q_1q_2q_3 = \{(t_1, t_2) : t_1, t_2 \geq 0, t_1 + t_2 \leq 1\}
\]
and \(\text{int}(\Delta p_1p_2p_3) \neq \emptyset \) if and only if \(\text{int}(\Delta q_1q_2q_3) \neq \emptyset \).

Let \(q = (1/3, 1/3) \). It is easy to check that \(B_r(q) \subset \Delta q_1q_2q_3 \) for \(r < 1/6 \). So \(\text{int}(\Delta q_1q_2q_3) \neq \emptyset \) and \(\text{int}(\Delta p_1p_2p_3) \neq \emptyset \). Hence \(\text{int}(S) \neq \emptyset \). Contradiction. So \(p_3 \in L \) and \(S \subset L \).

Since \(S \) is bounded, \(S \subset [-R, R]^2 \) for some \(R \).

If \(L = \{(x, y) : y = kx + b\} \) for some constants \(k \) and \(b \), then \(S \subset G = \{(x, kx + b) : -R \leq x \leq R\} \) and hence \(\mu(S) = 0 \) by (3).

If \(L = \{(x, y) : x = c\} \) for some constant \(c \), then \(S \subset [-r + c, r + c] \times [-R, R] \) for all \(r > 0 \). Hence \(\mu(S) \leq 2Rr \) and we see that \(\mu(S) = 0 \) by letting \(r \to 0 \).

This is obviously false for \(S \) not convex. We let \(S = (\mathbb{Q} \times \mathbb{Q}) \cap ([0, 1] \times [0, 1]) \). Clearly, \(\text{int}(S) = \emptyset \) but \(\mu(S) = \mu(S) = \mu([0, 1] \times [0, 1]) = 1 \). \(\square \)

(5) We call a bounded set \(S \subset \mathbb{R}^n \) has content if \(\mu(\partial S) = 0 \). Show that the union, the intersection and the product of two sets with contents have contents.

Proof. We claim that \(\partial(S_1 \cup S_2) \subset \partial S_1 \cup \partial S_2 \) for all sets \(S_1, S_2 \subset \mathbb{R}^n \).

Since \(\overline{S_1} \cup \overline{S_2} \subset \overline{S_1 \cup S_2} \) and \(\partial(S_1 \cup S_2) \subset \overline{S_1} \cup \overline{S_2}, \partial(S_1 \cup S_2) \subset \overline{S_1 \cup S_2} \). Suppose that there is a point \(p \in \partial(S_1 \cup S_2) \) such that \(p \not\in \partial S_1 \cup \partial S_2 \). Since \(p \in \overline{S_1} \cup \overline{S_2} \) and \(\overline{S_i} = \text{int}(S_i) \cup \partial S_i \) for \(i = 1, 2 \), we must have \(p \in \text{int}(S_1) \cup \text{int}(S_2) \subset \text{int}(S_1 \cup S_2) \). Contradiction.

If \(\mu(\partial S_1) = 0 \) and \(\mu(\partial S_2) = 0 \), \(\mu(\partial(S_1 \cup S_2)) \leq \mu(\partial S_1) + \mu(\partial S_2) = 0 \) and hence \(S_1 \cup S_2 \) has content.

We claim that \(\partial(S_1 \cap S_2) \subset \partial S_1 \cup \partial S_2 \) for all sets \(S_1, S_2 \subset \mathbb{R}^n \).
Again, we have $\partial(S_1 \cap S_2) \subset \overline{S}_1 \cap \overline{S}_2$. Suppose that there is a point $p \in \partial(S_1 \cap S_2)$ such that $p \notin \partial S_1 \cup \partial S_2$. Since $p \in \overline{S}_i$ and

$\overline{S}_i = \text{int}(S_i) \cup \partial S_i$

for $i = 1, 2$, we must have $p \in \text{int}(S_1) \cap \text{int}(S_2) = \text{int}(S_1 \cap S_2)$. Contradiction.

If $\mu(\partial S_1) = 0$ and $\mu(\partial S_2) = 0$, $\mu(\partial(S_1 \cap S_2)) \leq \mu(\partial S_1) + \mu(\partial S_2) = 0$ and hence $S_1 \cap S_2$ has content.

Finally, we claim that

$\partial(S_1 \times S_2) = (\partial S_1 \times \overline{S}_2) \cup (\overline{S}_1 \times \partial S_2)$

for all $S_1, S_2 \subset \mathbb{R}^n$.

Since

$\overline{S}_1 \times \overline{S}_2 = \overline{S}_1 \times \overline{S}_2$ and $\text{int}(S_1 \times S_2) = \text{int}(S_1) \times \text{int}(S_2)$,

we have

$\partial(S_1 \times S_2) = \overline{S}_1 \times \overline{S}_2 \setminus \text{int}(S_1 \times S_2)$

$= (\overline{S}_1 \times \overline{S}_2) \setminus (\text{int}(S_1) \times \text{int}(S_2))$

$= ((\text{int}(S_1) \cup \partial S_1) \times (\text{int}(S_2) \cup \partial S_2)) \setminus (\text{int}(S_1) \times \text{int}(S_2))$

$= (\text{int}(S_1) \times \partial S_2) \cup (\partial S_1 \times \text{int}(S_2)) \cup (\partial S_1 \times \partial S_2)$

$= (\text{int}(S_1) \times \partial S_2) \cup (\partial S_1 \times \partial S_2)$

$\cup ((\partial S_1 \times \text{int}(S_2)) \cup (\partial S_1 \times \partial S_2))$

$= (\partial S_1 \times \overline{S}_2) \cup (\overline{S}_1 \times \partial S_2)$.

If $\mu(\partial S_1) = 0$ and $\mu(\partial S_2) = 0$, then

$\mu(\partial(S_1 \times S_2)) \leq \mu(\partial S_1 \times \overline{S}_2) + \mu(\overline{S}_1 \times \partial S_2) = 0$

by (1) and hence $S_1 \times S_2$ has content. \qed
Solutions for Math 317 Assignment #2

(1) Find the following integrals by computing the limits of the corresponding Riemann sums:

(a) \(\int_{-1}^{1} x(1 - x)dx; \)

(b) \(\int_{D} xydxdy \) where \(D = [-1, 1] \times [0, 2] \).

Here you may use the identity \(\sum_{k=1}^{n} k^2 = n(n + 1)(2n + 1)/6. \)

Solution.

(a) Let \(n \in \mathbb{Z}^+ \) and \(P_n = \left\{ \frac{1 - k}{n} : k = 1, 2, ..., 2n - 1 \right\} \).

A corresponding Riemann sum is

\[
S(x(1 - x), P_n) = \frac{1}{n^2} \sum_{k=1}^{2n} \frac{k}{n} \left(1 - \frac{k}{n} \right)
\]
\[
= \frac{1}{n^2} \sum_{k=1}^{2n} k - \frac{1}{n^3} \sum_{k=1}^{2n} k^2
\]
\[
= \frac{2n(2n + 1)}{2n^2} - \frac{2n(2n + 1)(4n + 1)}{6n^3}
\]

and hence

\[
\int_{-1}^{1} x(1 - x)dx = \lim_{n \to \infty} S(x(1 - x), P_n) = 2 - \frac{8}{3} = -\frac{2}{3}\]

(b) Let \(n \in \mathbb{Z}^+ \) and

\(P_n = \left\{ -1 + \frac{k}{n} : k = 1, 2, ..., 2n - 1 \right\} \times \left\{ \frac{l}{n} : l = 1, 2, ..., 2n - 1 \right\} \).

A corresponding Riemann sum is

\[
S(xy, P_n) = \frac{1}{n^2} \sum_{k=1}^{2n} \sum_{l=1}^{2n} \left(-1 + \frac{k}{n} \right) \frac{l}{n}
\]
\[
= \frac{1}{n^4} \sum_{k=1}^{2n} \sum_{l=1}^{2n} (k - n)l
\]
\[
= \frac{1}{n^4} \left(\sum_{k=1}^{2n} (k - n) \right) \left(\sum_{l=1}^{2n} l \right)
\]
\[
= \frac{2n + 1}{n^2}\]
and hence
\[\int_D xy \, dx \, dy = \lim_{n \to \infty} S(xy, P_n) = 0. \]

(2) Show that every monotonic function \(f : [a, b] \to \mathbb{R} \) is Riemann integrable on \([a, b]\).

Proof. Let \(n \in \mathbb{Z}^+ \) and
\[P_n = \left\{ a + \frac{k(b-a)}{n} : k = 1, 2, \ldots, n-1 \right\} \]
which subdivides \([a, b]\) into
\[[a, b] = [x_0, x_1] \cup [x_1, x_2] \cup \ldots \cup [x_{n-1}, x_n] \]
where \(x_k = a + k(b-a)/n \) for \(k = 0, 1, 2, \ldots, n \). WLOG, we assume that \(f(x) \) is nondecreasing. Then
\[U(f, P_n) - L(f, P_n) = \frac{b-a}{n} \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) = \frac{b-a}{n} (f(b) - f(a)) \]
and hence
\[\lim_{n \to \infty} (U(f, P_n) - L(f, P_n)) = 0. \]
Therefore, \(f \) is Riemann integrable on \([a, b]\). \(\square \)

(3) If \(f : D \to \mathbb{R} \) is Riemann integrable on a bounded set \(D \subset \mathbb{R}^n \), then both
\[f_+(x) = \begin{cases} f(x) & \text{if } f(x) > 0 \\ 0 & \text{if } f(x) \leq 0 \end{cases} \]
and
\[f_-(x) = \begin{cases} -f(x) & \text{if } f(x) < 0 \\ 0 & \text{if } f(x) \geq 0 \end{cases} \]
are Riemann integrable on \(D \).

Proof. We observe that
\[f_+(x) = \frac{|f(x)| + f(x)}{2} \]
and
\[f_-(x) = \frac{|f(x)| - f(x)}{2}. \]
Since \(f \) is Riemann integrable on \(D \), \(|f|\) is Riemann integrable on \(D \). Therefore, both \(f_+(x) \) and \(f_-(x) \) are Riemann integrable on \(D \). \(\square \)
(4) If \(f : D \to \mathbb{R} \) and \(g : D \to \mathbb{R} \) are Riemann integrable on a bounded set \(D \subset \mathbb{R}^n \), then \(fg \) is Riemann integrable on \(D \).

Proof. Let \(I \) be a compact interval containing \(D \). We extend \(f \) and \(g \) by zero to functions on \(I \).

Since \(f \) and \(g \) are Riemann integrable on \(D \), for every \(r > 0 \), there exist partitions \(P_r \) and \(Q_r \) of \(I \) such that
\[
U(f, P_r) - L(f, P_r) < r \quad \text{and} \quad U(g, Q_r) - L(g, Q_r) < r.
\]
We let \(T_r \supset P_r \cup Q_r \) be a refinement of both \(P_r \) and \(Q_r \). Then
\[
U(f, T_r) - L(f, T_r) \leq U(f, P_r) - L(f, P_r) < r
\]
and
\[
U(g, T_r) - L(g, T_r) \leq U(g, Q_r) - L(g, Q_r) < r.
\]

Also since \(f \) and \(g \) are Riemann integrable on \(D \), they are bounded and hence there are constants \(A \) and \(B \) such that
\[
|f(x)| \leq A \quad \text{and} \quad |g(x)| \leq B \quad \text{for all} \quad x \in I.
\]
Suppose \(T_r \) subdivides \(I \) into \(I = \bigcup I_v \). For \(x_1, x_2 \in I_v \),
\[
|f(x_1)g(x_1) - f(x_2)g(x_2)| = |f(x_1)(g(x_1) - g(x_2)) + (f(x_1) - f(x_2))g(x_2)| \\
\leq |f(x_1)||g(x_1) - g(x_2)| + |f(x_1) - f(x_2)||g(x_2)| \\
\leq A\sup_{x \in I_v} g(x) - \inf_{x \in I_v} g(x) + B\sup_{x \in I_v} f(x) - \inf_{x \in I_v} f(x)
\]
and it follows that
\[
U(fg, T_r) - L(fg, T_r) \\
\leq A(U(g, T_r) - L(g, T_r)) + B(U(f, T_r) - L(f, T_r)) \\
< (A + B)r
\]
and hence \(fg \) is Riemann integrable on \(D \). \(\square \)

(5) Let \(S_1 \) and \(S_2 \) be two disjoint sets in \(\mathbb{R}^n \) with contents. Then
\[
\mu(S_1 \cup S_2) = \mu(S_1) + \mu(S_2).
\]

Proof. Let \(\chi_{S_1 \cup S_2}, \chi_{S_1} \) and \(\chi_{S_2} \) be the characteristic functions of \(S_1 \cup S_2, S_1 \) and \(S_2 \), respectively. Since \(S_1 \) and \(S_2 \) have contents, \(\chi_{S_1} \) and \(\chi_{S_2} \) are Riemann integrable on every compact interval \(I \supset S_1 \cup S_2 \) and
\[
\int_I \chi_{S_i} = \mu(S_i)
\]
for $i = 1, 2$. And since $\chi_{S_1 \cup S_2} = \chi_{S_1} + \chi_{S_2}$, $\chi_{S_1 \cup S_2}$ is Riemann integrable on I and
\[
\int_I \chi_{S_1 \cup S_2} = \int_I \chi_{S_1} + \int_I \chi_{S_2} = \mu(S_1) + \mu(S_2).
\]
And since $\chi_{S_1 \cup S_2}$ is Riemann integrable on I, $S_1 \cup S_2$ has content and
\[
\int_I \chi_{S_1 \cup S_2} = \mu(S_1 \cup S_2).
\]
Therefore,
\[
\mu(S_1 \cup S_2) = \mu(S_1) + \mu(S_2).
\]