Math 311 Midterm Review

Some information on the midterm:

- Time and location: 9:00-9:50, Oct. 25, 2013, CAB
- Sections covered by the midterm: (BMPS) 1.0-1.5, 2.1-2.4, 3.1-3.2, 3.4-3.5

A sample midterm:

(1) Determine where each of the following functions \(f(z) \) is holomorphic and find its complex derivative \(f'(z) \) where it is holomorphic. You must justify your answer.
 (a) \(f(z) = x +yi \), where \(x = \text{Re}(z) \) and \(y = \text{Im}(z) \).
 (b) \(f(z) = z^2 \).
 (c) \(f(z) = 2\sin(z) \).
 (d) \(f(z) = \text{Log}(1 - 2z) \), where \(\text{Log} \) is the principal branch of \(\log z \).

(2) Show that
 \[5 \sinh(|y|) \leq |3 \cos z + 4 \sin z| \leq 5 \cosh(y) \]
 for all complex numbers \(z \), where \(y = \text{Im}(z) \).

(3) Find all the complex roots of the equation
 \[\cos z + \sin z = 2. \]

(4) Let
 \[T(z) = \frac{i - z}{i + z}. \]
 and \(D = \{|z + 2| < 1\} \). Find and sketch the image \(T(D) \).

(5) Let \(f : D \to \mathbb{C} \) be a complex function defined in the disk
 \(D = \{|z-z_0| < r\} \). Show that if \(f(z) \) is differentiable at \(z_0 \) and
 \(f'(z_0) \neq 0 \), then \(f(z) \) is not differentiable at \(z_0 \).