Math 311 Assignment #6
Due Nov. 1, 2013

(1) Let C_R denote the upper half of the circle $|z| = R$ for some $R > 1$. Show that
\[\left| \frac{e^{iz}}{z^2 + z + 1} \right| \leq \frac{1}{(R - 1)^2} \]
for all z lying on C_R.

(2) Find the length of the following curves:
 (a) $\gamma(t) = 3t + i$ for $0 \leq t \leq 1$.
 (b) $\gamma(t) = 2i + e^{it}$ for $0 \leq t \leq 1$.
 (c) $\gamma(t) = \sin(t)$ for $-\pi \leq t \leq \pi$.
 (d) $\gamma(t) = (t, t^2)$ for $1 \leq t \leq 2$.

(3) Integrate the following functions over the circle $|z| = 2$, oriented clockwise:
 (a) $z - \overline{z}$.
 (b) $z^2 + 2z + 3$.
 (c) $1/z$.
 (d) xy.

(4) Let γ be the polygonal path consisting of the line segments AB and BC, where $A = 1$, $B = i$ and $C = -1$. Compute the following integrals:
 (a) $\int_{\gamma} zdz$.
 (b) $\int_{\gamma} z^2 dz$.
 (c) $\int_{\gamma} xy dz$.
 (d) $\int_{\gamma} \sin(z) dz$.

(5) Let $f : G \to \mathbb{C}$ be a complex function on an open set $G \subset \mathbb{C}$ and $\gamma : [0, 1] \to G$ be a smooth curve in G. Suppose that f has continuous partial derivations $f_x = \partial f / \partial x$ and $f_y = \partial f / \partial y$ in G. Then
\[\frac{d}{dt} (f(\gamma(t))) = f_x(\gamma(t)) \text{Re}(\gamma'(t)) + f_y(\gamma(t)) \text{Im}(\gamma'(t)) \]
for all $t \in [0, 1]$. In particular, if f is holomorphic in G, then
\[\frac{d}{dt} (f(\gamma(t))) = f'(\gamma(t)) \gamma'(t) \]
for all $t \in [0, 1]$.

(6) Show that
\[|\log(z)| \leq |\ln |z|| + \pi \]
for all \(z \neq 0 \).

(7) Let \(C_R \) be the circle \(|z| = R \) \((R > 1)\) oriented counterclockwise. Show that
\[\left| \int_{C_R} \frac{\log(z^2)}{z^2} \, dz \right| < 4\pi \left(\frac{\pi + \ln R}{R} \right) \]
and then
\[\lim_{R \to \infty} \int_{C_R} \frac{\log(z^2)}{z^2} \, dz = 0. \]

(8) Let \(C_R \) be the circle \(|z| = R \) \((R > 1)\) and \(f(z) \) and \(g(z) \) be two complex polynomials of degrees \(m \) and \(n \), respectively. If \(n - m \geq 2 \), then
\[\lim_{R \to \infty} \int_{C_R} \frac{f(z)}{g(z)} \, dz = 0. \]

(9) A set \(G \subset \mathbb{C} \) is called star-shaped if there is a point \(p \in G \) such that the line segment \(pq \subset G \) for all \(q \in G \). Show that if \(G \) is star-shaped, every two closed curves in \(G \) are \(G \)-homotopic.

(10) Let \(G = \mathbb{C}^* \). Show that \(\gamma_1 \) and \(\gamma_2 \) are \(G \)-homotopic for
(a) \(\gamma_1 = \{|z| = 1\} \) and \(\gamma_2 \) is the boundary of the square \(|x| \leq 1, |y| \leq 1\), both oriented counterclockwise.
(b) \(\gamma_1 = \{|z - 2| = 1\} \) and \(\gamma_2 = \{|z + 2| = 1\} \), both oriented counterclockwise.