Math 311 Final Review

Some information on the final:

- Time and location: 9-12, Dec. 16, 2013, CCIS 1-160
- Sections covered by the final: (BMPS) 1.0-1.5, 2.1-2.4, 3.1-3.2, 3.4-3.5, 4.1-4.3, 5.1-5.3, 7.1-7.4, 8.1-8.3, 9.1-9.2

Some review problems for the final:

1. Let \(f(z) \) be the principal branch of \(z^{-i} \).

 (a) Find \(f(i) \).

 (b) Show that \(f(z_1) f(z_2) = \lambda f(z_1 z_2) \) for all \(z_1, z_2 \neq 0 \), where \(\lambda = 1, e^{2\pi} \) or \(e^{-2\pi} \).

2. Let \(f(z) = \frac{z^2}{z^2 - 3z + 2} \). Find the Laurent series of \(f(z) \) in each of the following domains:

 (a) \(1 < |z| < 2 \)

 (b) \(1 < |z - 3| < 2 \)

3. Compute the integral

 \[
 \int_{-\infty}^{\infty} \frac{\sin x}{x^2 + 2x + 2} \, dx.
 \]

4. Compute the integral

 \[
 \int_{0}^{\pi} \frac{d\theta}{2 - \cos \theta}.
 \]

5. For each of the following complex functions, do the following:

 - find all its singularities in \(\mathbb{C} \);

 - write the principal part of the function at each singularity;

 - for each singularity, determine whether it is a pole, a removable singularity, or an essential singularity;

 - compute the residue of the function at each singularity.

 (a) \(f(z) = \tan z \)

 (b) \(f(z) = (1 - z^2) \sin \left(\frac{1}{z} \right) \)

 (c) \(f(z) = \frac{e^z}{z^{2011}} \cos \frac{z}{z^2} \)

 (d) \(f(z) = \frac{\cos z}{z^2 - z^3} \)
(6) Let \(f(z) = u(x, y) + iv(x, y) \) be an entire function with the property that \(v(x, y) \geq x \) for all \(z = x + yi \), where \(u(x, y) = \text{Re}(f(z)) \) and \(v(x, y) = \text{Im}(f(z)) \). Show that \(f(z) \) is a polynomial of degree 1.

(7) Do the following:

 (a) Find \(\sin \left(\frac{\pi}{4} + i \right) \).

 (b) Show that \(|\sin z|^2 = (\sin x)^2 + (\sinh y)^2 \) for all complex numbers \(z = x + yi \).

 (c) Let \(C_N \) be the boundary of the square
 \[
 \left\{ |x| \leq N\pi + \frac{\pi}{2}, |y| \leq N\pi + \frac{\pi}{2} \right\}
 \]
 oriented counterclockwise, where \(N \) is a positive integer. Show that
 \[
 \lim_{N \to \infty} \int_{C_N} \frac{dz}{z^2 \sin z} = 0.
 \]

 (d) Use Cauchy Integral Theorem or Residue Theorem to show that
 \[
 \frac{1}{2\pi i} \int_{C_N} \frac{dz}{z^2 \sin z} = \frac{1}{6} + 2 \sum_{n=1}^{N} \frac{(-1)^n}{n^2 \pi^2}
 \]
 and conclude that
 \[
 \frac{\pi^2}{12} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \ldots
 \]

(8) Let \(f(z) \) be an entire function satisfying \(|f(z)| \leq |z|^2 \) for all \(z \). Show that \(f(z) \equiv az^2 \) for some complex constant \(a \) satisfying \(|a| \leq 1 \).

(9) Compute the integral
\[
\int_0^{\infty} \frac{x}{x^4 + 1} \, dx.
\]

(10) Compute the contour integral
\[
\int_C \frac{z^{2012}}{z^{2013} + z^2 + z + 1} \, dz
\]
where \(C \) is the circle \(|z| = 2 \) oriented counter-clockwise.