(1) No books, notes or calculators are allowed.
(2) Show your work in details.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
<th>Problem</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (25)</td>
<td></td>
<td>2 (30)</td>
<td></td>
</tr>
<tr>
<td>3 (25)</td>
<td></td>
<td>4 (20)</td>
<td></td>
</tr>
<tr>
<td>5 (40)</td>
<td></td>
<td>6 (30)</td>
<td></td>
</tr>
<tr>
<td>7 (30)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (200)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(1) (25 pts) Do the following:

(a) (5 pts) Compute $\sin\left(\frac{\pi}{3} + i\right)$

(b) (10 pts) Show that

\[\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2 \]

for all complex numbers z_1 and z_2.

(c) (10 pts) Show that $\sin(\bar{z})$ is nowhere holomorphic in \mathbb{C}.
(2) (30 pts) Let

\[f(z) = \frac{1}{z^2 - z^3} \]

Find the Laurent series of \(f(z) \) in each of the following domains:

(a) (15 pts) \(|z| > 1\)

(b) (15 pts) \(0 < |z - 1| < 1\)
(3) (25 pts) Compute the integral
\[\int_{-\infty}^{\infty} \frac{\sin(tx)}{x^2 + 2x + 2} \, dx \]
for \(t < 0 \).
(4) (20 pts) Evaluate the contour integral of the following functions around the circle $|z| = 100$ oriented counterclockwise:

(a) $\frac{1}{\sin(z)}$

(b) $\frac{1}{e^{2z} - e^z}$
(5) (40 pts) For each of the following complex functions, do the following:

- find all its singularities in \(\mathbb{C} \);
- write down the principal part of the function at each singularity;
- for each singularity, determine whether it is a pole, a removable singularity, or an essential singularity; if it is a pole, determine its order;
- compute the residue of the function at each singularity.

(a) \(\frac{1}{z + z^2} \)

(b) \(z \cos \left(\frac{1}{z} \right) \)
(c) \(f(z) = \frac{\sin(z)}{z^{2013}} \)

(d) \(\frac{\sinh z}{z^4(1 - z^2)} \)
(6) (30 pts) Let $f(z) = u(x, y) + iv(x, y)$ be an entire function satisfying
\[u(x, y) + v(x, y) \geq 0 \]
for all $z = x + yi$, where $u(x, y) = \text{Re}(f(z))$ and $v(x, y) = \text{Im}(f(z))$. Show that $f(z)$ is a constant.
(7) (30 pts) Let $f(z)$ be an entire function satisfying
\[|f(z)| \leq |z^2 + z + 1| \]
for all z. Show that $f(z) \equiv a(z^2 + z + 1)$ for some complex constant a satisfying $|a| \leq 1$.