Uniqueness of Taylor Series

Thm. If \(f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \)
in \(\{ |z - z_0| < r \} \) for some \(r > 0 \),
then \(a_n = \frac{f^{(n)}(z_0)}{n!} \)

Proof. \(\frac{d^n}{dz^n} \) on both sides

\[\Rightarrow f^{(n)}(z) = \sum_{m=0}^{\infty} a_m \left((z - z_0)^m \right)^{(n)} \]

\[= \sum_{m=n}^{\infty} m(m-1) \cdots (m-n+1) a_m (z - z_0)^{m-n} \]
in \(\{ |z - z_0| < r \} \) \(\Rightarrow f^{(n)}(z_0) = n! \, a_n \)
— Zeros of Holomorphic Functions

Defn. Let \(f(z) \) be a holomorphic function at \(z_0 \). We say that \(f(z) \)
has a zero at \(z_0 \) of multiplicity \(m \) if
\[
f(z) = \sum_{n=m}^{\infty} a_n (z-z_0)^n
\]
in \(|z-z_0| < r \) for some \(a_m \neq 0 \), or equivalently
\[
f(z_0) = f'(z_0) = \ldots = f^{(m-1)}(z_0) = 0
\]
and \(f^{(m)}(z_0) \neq 0 \)

E.g. Let \(f(z) = (z-z_1)^{m_1} (z-z_2)^{m_2} \ldots (z-z_n)^{m_n} \)
be a polynomial in \(z \) with \(z_1, z_2, \ldots, z_n \) distinct roots.
\(f(z) \) has a zero at \(z_k \) of multiplicity \(m_k \).

e.g. Find zeros of \(\sin z \) and their multiplicities:
\[
z = n\pi \quad f'(n\pi) = \cos(n\pi) \neq 0
\]
\(\Rightarrow \sin z \) has zeros at \(n\pi \) of multiplicities 1.

e.g. Find zeros of \(1 - \cos z \) and their multiplicities:
\[
1 - \cos z = 0 \iff z = 2n\pi
\]
\(f'(2n\pi) = \sin(2n\pi) = 0 \)
\(f''(2n\pi) = \cos(2n\pi) \neq 0 \)
l - cos z has zeros at \(2n\pi\) of multiplicities 2

Thm. Let \(f(z)\) be a holomorphic function in \(\{ |z-z_0| < r \}\). Then \(f(z)\) has a zero at \(z_0\) of multiplicity \(m\) iff \(f(z) = (z-z_0)^m g(z)\) for some \(g(z)\) holomorphic in \(\{ |z-z_0| < r \}\) and \(g(z_0) \neq 0\).

Proof. \(f(z)\) has a zero at \(z_0\) of multiplicity \(m\) \(\Rightarrow\)

\[
f(z) = \sum_{n=m}^{\infty} a_n (z-z_0)^n \quad \text{in} \quad |z-z_0| < r
\]

\(a_m \neq 0\)
\[f(z) = (z - z_0)^m \sum_{n=m}^{\infty} a_n (z - z_0)^{n-m} \]

Let \(g(z) = \sum_{n=m}^{\infty} a_n (z - z_0)^{n-m} \)

\[\sum_{n=m}^{\infty} a_n (z - z_0)^{n} \] converges in \(|z - z_0| < r\)

\[\Rightarrow \lim_{n \to \infty} |a_n s^n| = 0 \text{ for all } |s| < r \]

\[\Rightarrow \lim_{n \to \infty} |a_n s^{n-m}| = 0 \text{ for all } |s| < r \]

\[\Rightarrow \sum_{n=m}^{\infty} a_n (z - z_0)^{n-m} \] converges in \(|z - z_0| < r\)

\[\Rightarrow g(z) \text{ is holomorphic in } |z - z_0| < r \]

Also \(g(z_0) = a_m \neq 0 \)
\[f(z) = (z - z_0)^m g(z) \] for some \(g(z) \) holomorphic in \(|z - z_0| < r \) and \(g(z_0) \neq 0 \)

Let \(g(z) = \sum_{n=0}^{\infty} \frac{g^{(n)}(z_0)}{n!} (z - z_0)^n \)

\[= \sum_{n=0}^{\infty} b_n (z - z_0)^n \]

\(b_0 = g(z_0) \neq 0 \)

Then \(f(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^{m+n} \)

\[= \sum_{n=m}^{\infty} b_{n-m} (z - z_0)^n \]

\(b_0 \neq 0 \Rightarrow f(z) \) has a zero at \(z_0 \) of multiplicity \(m \)
Thm. (Complex L'Hospital)
If \(f(z) \) and \(g(z) \) are analytic at \(z_0 \) and \(f(z_0) = g(z_0) = 0 \), then
\[
\lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{f'(z)}{g'(z)}
\]

Thm. (Zeros of Holomorphic Functions are isolated)
If \(f(z) \) is analytic at \(z_0 \) and \(f(z_0) = 0 \), then
— either \(f(z) = 0 \) in \([z - z_0] < r\)
— or \(f(z) \neq 0 \) in \([0 < |z - z_0| < r]\)
for some \(r > 0 \).
Proof. \(f(z) \) is analytic at \(z_0 \)
\[f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n \]
in \(|z-z_0| < r \)

If \(a_n = 0 \) for all \(n \geq 0 \)
then \(f(z) \equiv 0 \) in \(|z-z_0| < r \)

If \(a_n \neq 0 \) for some \(n \),
let \(m \) be the smallest \(m \)
\(s.t. \ a_m \neq 0 \), i.e., \(a_0 = a_1 = \ldots = a_{m-1} = 0 \) and \(a_m \neq 0 \)

\(\Leftrightarrow f(z) \) has a zero at \(z_0 \)
of multiplicity \(m \)
\[f(z) = (z - z_0)^m \cdot g(z) \]

for \(g(z) \) analytic at \(z_0 \) and \(g(z_0) \neq 0 \)

Let \(M = |g(z_0)| \)

\(g(z) \) analytic at \(z_0 \)

\(g(z) \) continuous at \(z_0 \)

\[\lim_{z \to z_0} g(z) = g(z_0) \]

\(\Rightarrow \) There is \(r' > 0 \) s.t.

\[|g(z) - g(z_0)| < \frac{M}{2} \quad \text{for} \quad |z - z_0| < r' \]

\(\Rightarrow \) \[|g(z)| \geq |g(z_0)| - |g(z_0) - g(z)| \]

\[> M - \frac{M}{2} = \frac{M}{2} \]
\[\Rightarrow g(z) \neq 0 \quad \text{in} \quad |z-z_0| < r' \]
\[\Rightarrow f(z) = (z-z_0)^m g(z) \neq 0 \quad \text{in} \quad \{0 < |z-z_0| < r'\} \]

Cor. If \(f(z) \) is analytic at \(z_0 \) and there is a sequence \(\{z_1, z_2, \ldots, z_n, \ldots\} \) such that \(z_n \neq z_0 \), \(\lim_{n \to \infty} z_n = z_0 \), and \(f(z_n) = 0 \), then \(f(z) \neq 0 \) in \(\{1 < |z-z_0| < r'\} \) for some \(r > 0 \). In other words, the zeros of \(f(z) \) are isolated unless \(f(z) \neq 0 \).