1. Elementary Topology of Complex Plane

1.1. **What is topology.** Topology is a branch of geometry that studies the geometric objects, called topological spaces, under continuous maps. Two topological spaces are considered the same if there is a continuous bijection between them. For example, two circles of different radius are regarded as the same topological space.

1.2. **Basic notions of topology.** We mainly concern ourselves with the complex plane $\mathbb{C} \cong \mathbb{R}^2$.

Definition 1.1. A set $G \subset \mathbb{C}$ is open if for every point $p \in G$, there is $r > 0$ such that

$$B_p(r) = \{|z - z_0| < r\} \subset G.$$

A related concept is the definition of interior points.

Definition 1.2. A point p of a set $G \subset \mathbb{C}$ is an interior point of G if there is $r > 0$ such that

$$B_p(r) = \{|z - z_0| < r\} \subset G.$$

In other words, G is open if and only if every point of G is an interior point.

Example 1.3. Show that $D = \{|z| < 1\}$ is open.

Proof. For $z_0 \in D$, let $r = 1 - |z_0|$. For every z satisfying $|z - z_0| < r$,

\begin{equation}
|z| \leq |z - z_0| + |z_0| < r + |z_0| = 1.
\end{equation}

Therefore, $\{|z - z_0| < r\} \subset D$ and hence D is open. \hfill \Box

Example 1.4. Show that $D = \{|z| \leq 1\}$ is not open.

Proof. For $z_0 = 1 \in D$, $1 + r/2 \notin D$ for all $r > 0$. Therefore,

\begin{equation}
\{|z - 1| < r\} \notin D
\end{equation}

for all $r > 0$ and hence D is not open. \hfill \Box

Here are a couple of facts about open sets:

Theorem 1.5. In \mathbb{C},

- \mathbb{C} and \emptyset are open.
- The union of open sets is open.
- The intersection of finitely many open sets is open.
- Let $F : G \to \mathbb{R}$ be a continuous function on an open set $G \subset \mathbb{C}$. Then $\{F(z) < 0\}$ is open.
- Let $F : G \to \mathbb{C}$ be a continuous function on an open set $G \subset \mathbb{C}$. Then $F^{-1}(U)$ is open for every open set $U \subset \mathbb{C}$.

1
Remark 1.6. A subtle point in the above theorem is that the intersection of an infinitely many open sets is not necessarily open. Indeed, for every point \(p \in \mathbb{C} \),
\[
\{p\} = \bigcap_{r > 0} B_p(r) = \bigcap_{r > 0} \{ |z - p| < r \}
\]
That is, every set \(\{p\} \) of a single point is the intersection of open sets; yet \(\{p\} \) is obviously not open. More generally, every closed set \(G \) (see below) is the intersection of open sets given by
\[
G = \bigcap_{r > 0} \left(\bigcup_{p \in G} B_p(r) \right).
\]
The only sets that are both open and closed are \(\mathbb{C} \) and \(\emptyset \) (see below).

Example 1.7. Show that \(A = \{1 < |z| < 2\} \) is open.

Solution. We can write
\[
A = \{1 - |z| < 0\} \cap \{|z| - 2 < 0\} = A_1 \cap A_2.
\]
Since \(F_1(z) = 1 - |z| \) and \(F_2(z) = |z| - 2 \) are continuous functions on \(\mathbb{C} \),
\[
A_1 = \{F_1(z) < 0\} \quad \text{and} \quad A_2 = \{F_2(z) < 0\}
\]
are open by Theorem 1.5. And since the intersection of two open sets is open, \(A \) is open.

Example 1.8. Find \(T^{-1}(D) \) for \(D = |z| < 1/2 \) and
\[
T(z) = \frac{1 + z}{1 - z}.
\]
Show that \(T^{-1}(D) \) is open.

Solution. We have
\[
T^{-1}(D) = \{z : T(z) \in D\} = \left\{ z : |T(z)| < \frac{1}{2} \right\}
\]
\[
= \left\{ z : \left| \frac{1 + z}{1 - z} \right| < \frac{1}{2} \right\} = \{z : 2|1 + z| < |1 - z|\}
\]
\[
= \{ z = x + yi : 4(x + 1)^2 + 4y^2 < (x - 1)^2 + y^2 \}
\]
\[
= \left\{ z = x + yi : (x + \frac{5}{3})^2 + y^2 < \frac{16}{9} \right\}
\]
\[
= \left\{ z : \left| z + \frac{5}{3} \right| < \frac{4}{3} \right\}.
\]
Obviously, \(T^{-1}(D) \) is open.
Definition 1.9. A set $G \subset \mathbb{C}$ is **closed** if its complement $G^c = \mathbb{C}\setminus G$ is open.

A related concept is the definition of **limit points**.

Definition 1.10. A point p is a **limit point** of a set $G \subset \mathbb{C}$ if there exists a sequence $\{p_n\} \subset G$ such that

$$
\lim_{n \to \infty} p_n = p.
$$

In fact, G is closed if and only if G contains all its limit points.

Here are some basic facts about closed sets:

Theorem 1.11. In \mathbb{C},

- \mathbb{C} and \emptyset are closed.
- The intersection of closed sets is closed.
- The union of finitely many closed sets is closed.
- Let $F : G \to \mathbb{R}$ be a continuous function on a closed set $G \subset \mathbb{C}$. Then $\{F(z) \leq 0\}$ is closed.
- Let $F : G \to \mathbb{C}$ be a continuous function on a closed set $G \subset \mathbb{C}$. Then $F^{-1}(V)$ is closed for every closed set $V \subset \mathbb{C}$.

Definition 1.12. A set $G \subset \mathbb{C}$ is **bounded** if there is $R > 0$ such that $G \subset \{|z| \leq R\}$; namely, there is $R > 0$ such that $|z| \leq R$ for all $z \in G$. Otherwise, G is **unbounded**.

Example 1.13. Show that $G = \{|z - 10| < 10\}$ is bounded.

Proof. For every $z \in G$,

$$
|z| \leq |z - 10| + 10 < 10 + 10 = 20.
$$

Therefore, G is bounded. \qed

Example 1.14. Show that $G = \{|z - 10| > 10\}$ is unbounded.

Proof. There is a sequence $a_n = n + 20$ for $n = 1, 2, \ldots$ such that $a_n \in G$ and

$$
\lim_{n \to \infty} |a_n| = \infty.
$$

Consequently, G is unbounded. \qed

Definition 1.15. A set $G \subset \mathbb{C}$ is **(path-)connected** if for every two points $p, q \in G$, there is a continuous function $\gamma : [0, 1] \to G$ such that $\gamma(0) = p$ and $\gamma(1) = q$.

Example 1.16. Show that $D = \{|z| < 1\}$ is connected.
Proof. For every pair of points $p, q \in D$, the line segment
\begin{equation}
\overline{pq} = \{(1 - t)p + tq : 0 \leq t \leq 1\}
\end{equation}
is contained in D. Let $\gamma : [0, 1] \to D$ be the function
\begin{equation}
\gamma(t) = (1 - t)p + tq.
\end{equation}
Then γ is continuous, $\gamma(0) = p$ and $\gamma(1) = q$. \hfill \Box

Indeed, a set G is called \textit{convex} if $\overline{pq} \subset G$ for all $p, q \in G$; every convex set is connected.

\textbf{Theorem 1.17.} Every convex set in \mathbb{C} is connected.

Proof. Use the same argument as in the above example. \hfill \Box

\textbf{Theorem 1.18.} Let U and V be two connected sets. If $U \cap V \neq \emptyset$, then $U \cup V$ is connected.

Proof. Let q be a point of $U \cap V$. For every pair of points $p_1 \in U$ and $p_2 \in V$, since U and V are connected, there exist continuous functions $\gamma_1 : [0, 1] \to U$ and $\gamma_2 : [0, 1] \to V$ satisfying $\gamma_1(0) = p_1$, $\gamma_1(1) = q$, $\gamma_2(0) = q$ and $\gamma_2(1) = p_2$. Then we define
\begin{equation}
\gamma(t) = \begin{cases}
\gamma_1(2t) & \text{if } 0 \leq t \leq \frac{1}{2} \\
\gamma_2(2t - 1) & \text{if } \frac{1}{2} < t \leq 1
\end{cases}
\end{equation}
Clearly, $\gamma : [0, 1] \to U \cup V$ is continuous, $\gamma(0) = p_1$ and $\gamma(1) = p_2$. So $U \cup V$ is connected. \hfill \Box

\textbf{Example 1.19.} Show that $\mathbb{C}\setminus[0, \infty)$ is connected.

Proof. We can write
\begin{equation}
\mathbb{C}\setminus[0, \infty) = U_1 \cup U_2 \cup U_3
\end{equation}
where $U_1 = \{x < 0\}$, $U_2 = \{y > 0\}$ and $U_3 = \{y < 0\}$. All of U_1, U_2, U_3 are connected since they are convex.

Since $U_1 \cap U_2 \neq \emptyset$, $U_1 \cup U_2$ is connected. And since $(U_1 \cup U_2) \cap U_3 \neq \emptyset$, $U_1 \cup U_2 \cup U_3$ is connected. \hfill \Box

\textbf{Theorem 1.20.} Let G be a set in \mathbb{C} satisfying $G \subset U \cup V$, where U and V are open, $U \cap V = \emptyset$, $U \cap G \neq \emptyset$ and $V \cap G \neq \emptyset$. Then G is not connected.

\textbf{Example 1.21.} Show that the complement of $\{1 < |z| < 2\}$ in \mathbb{C} is not connected.
Proof. Let \(G = \mathbb{C}\{1 < |z| < 2\} \). Then
\[
G = \{|z| \leq 1\} \cup \{|z| \geq 2\} \subset U \cup V
\]
where \(U = \{|z| < 3/2\} \) and \(V = \{|z| > 3/2\} \). Clearly, \(U \) and \(V \) are open, \(U \cap V = \emptyset \), \(U \cap G \neq \emptyset \) and \(V \cap G \neq \emptyset \). Therefore, \(G \) is not connected.

Corollary 1.22. The only sets that are both open and closed in \(\mathbb{C} \) are \(\mathbb{C} \) and \(\emptyset \).

Proof. Clearly, \(\mathbb{C} \) is connected since it is convex. Suppose that there is a set \(U \neq \emptyset, \mathbb{C} \) that is both open and closed in \(\mathbb{C} \). Let \(V = U^c = \mathbb{C} \setminus U \). Since \(U \) is closed, \(V \) is open. And since \(U \neq \mathbb{C} \), \(V \neq \emptyset \). Therefore, \(\mathbb{C} \subset U \cup V \), \(U \) and \(V \) are open, \(U \cap V = \emptyset \), \(U \neq \emptyset \) and \(V \neq \emptyset \). It follows from Theorem 1.20 that \(\mathbb{C} \) is not connected. Contradiction. \(\square \)

In complex analysis, a connected open set \(G \) is called a *region* or *domain*. Usually, we study complex functions defined on a region.

Every open set \(G \subset \mathbb{C} \) is a disjoint union of regions:
\[
G = \bigcup_i G_i
\]
where each \(G_i \) is open and connected and \(G_i \cap G_j = \emptyset \) for \(i \neq j \). Each \(G_i \) is a *connected component* of \(G \).