A1. Compute
\[\int_0^\infty \frac{\cos x}{(1 + x^2)^2} \, dx \]

A2. Let \(f(z) = z^3 + a_1z^2 + a_2z + a_3 \) be a cubic polynomial with three distinct roots \(r_1, r_2, r_3 \).
(a) Use residue theorem to compute
\[\int_{|z|=R} \frac{dz}{f(z)} \]
where the circle \(|z| = R \) is oriented counter-clockwise and \(R > |r_1|, |r_2|, |r_3| \).
(b) Show that
\[\lim_{R \to \infty} \int_{|z|=R} \frac{dz}{f(z)} = 0 \]
(c) Combine (1) and (2) to show the identity
\[\frac{1}{(r_1 - r_2)(r_1 - r_3)} + \frac{1}{(r_2 - r_3)(r_2 - r_1)} + \frac{1}{(r_3 - r_1)(r_3 - r_2)} = 0 \]

A3. Find all the Laurent expansions of \(f(z) = 1 + \frac{z^4}{z^2(z-1)^2} \) about \(z = 2 \).

A4. Let \(f(z) \) be an analytic function on \(0 < |z-p| < r \). We say that \(f(z) \) has a zero at \(p \) of order \(n \) if \(f(z) = (z-p)^ng(z) \) for some analytic function \(g(z) \) on \(|z-p| < r \) with \(g(p) \neq 0 \); and we say that \(f(z) \) has a pole at \(p \) of order \(n \) if \(f(z) = (z-p)^{-n}g(z) \) for some analytic function \(g(z) \) on \(|z-p| < r \) with \(g(p) \neq 0 \). Show that if \(f(z) \) has a zero or pole at \(p \) of order \(n > 0 \), then
\[\frac{f'(z)}{f(z)} \]
has a pole at \(p \) of order 1; and
\[\text{Res}_p \left(\frac{f'(z)}{f(z)} \right) = \begin{cases} n & \text{if } f(z) \text{ has a zero at } p \\ -n & \text{if } f(z) \text{ has a pole at } p \end{cases} \]

A5. Compute
\[\int_{|z|=2006} \frac{1}{e^z - 1} \, dz \]
where the circle \(|z| = 2006 \) is oriented counter-clockwise.