Problems from the book:

Sec. 5. (p. 62): 4

Sec. 6. (p. 73): 1, 4

Additional problems:

A1. We know that if either

\[
\lim_{n \to \infty} \frac{|a_n|}{a_{n+1}} = R
\]

or

\[
\lim_{n \to \infty} \frac{1}{\sqrt{|a_n|}} = R
\]

the radius of convergence of the power series \(\sum_{n=0}^{\infty} a_n z^n \) is \(R \). Give an example of a power series \(\sum_{n=0}^{\infty} a_n z^n \) such that

- \(a_n \neq 0 \) for all \(n \);
- neither of the above limits exists;
- the power series have radius of convergence 1.

A2. Let

\[
f(z) = \frac{1}{1 - z - z^2}
\]

and let

\[
a_n = \frac{f^{(n)}(0)}{n!}
\]

for \(n = 0, 1, 2, \ldots \). Show that \(a_{n+2} = a_{n+1} + a_n \) for all \(n \).