(1) No books, notes or calculators are allowed.
(2) Show your work in details.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Notations and formulas:

- \(\mathbb{R} \) is the set of real numbers.
- \(\mathbb{R}^n \) is the \(n \)-dimensional Euclidean space.
- \(\mathbb{R}[x] \) is the set of polynomials in \(x \) with real coefficients.
- \(M_{m \times n}(\mathbb{R}) \) is the set of \(m \times n \) matrices with real entries.
- For a vector space \(V \) and an ordered basis \(B \) of \(V \), \([v]_B \) is the coordinate vector of a vector \(v \in V \) under \(B \).
- For two ordered bases \(B = \{v_1, v_2, ..., v_n\} \) and \(C = \{u_1, u_2, ..., u_n\} \) of a vector space \(V \), the change-of-basis matrix \(P_{B \rightarrow C} \) is given by
 \[
P_{B \rightarrow C} = \begin{bmatrix}
 [u_1]_B & [u_2]_B & \cdots & [u_n]_B
 \end{bmatrix}.
 \]
(1) (20 points) Determine whether the following sets W are subspaces of the given vector spaces V. Justify your answer.

(a) (10 points) $V = \mathbb{R}^2$ and $W = \{(x, y) \in \mathbb{R}^2 : x + y = 1\}$.

(b) (10 points) $V = \mathbb{R}[x]$ and $W = \{f(x) \in \mathbb{R}[x] : f(1) = f(2) + f(3)\}$.
(2) (30 points) Let
\[B = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \end{bmatrix} \]
and \(V = \{ A \in M_{2 \times 2}(\mathbb{R}) : AB = 0 \} \). Do the following:

(a) (10 points) Show that \(V \) is a subspace of \(M_{2 \times 2}(\mathbb{R}) \).
(b) (20 points) Find dim V and a basis for V.
(3) (20 points) Determine whether the following maps T are linear transformations. Justify your answer.

(a) (10 points) $T : M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$ given by $T(A) = 2A - A^T$.

(b) (10 points) $T : \mathbb{R}[x] \to \mathbb{R}$ given by $T(f(x)) = f(1)f(2)$.
(4) (30 points) Let $V = \{ f(x) \in \mathbb{R}[x] : \deg f(x) \leq 2 \}$ and let

$B = \{ 1, x + 1, (x + 1)^2 \}$ and $C = \{ 1, 1 - x, (1 - x)^2 \}$

be two ordered bases of V. Do the following:

(a) (20 points) Find the change-of-basis matrices $P_{B \leftarrow C}$ and $P_{C \leftarrow B}$.

(b) (10 points) Let $f(x)$ be a polynomial in V satisfying

$[f(x)]_B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$

Find $[f(x)]_C$.