A5.1 Let A and B be two similar $n \times n$ matrices. Suppose that $B = P^{-1}AP$ for some invertible matrix P. Show that if $v(t)$ is a solution of the system of linear ODEs
\[\frac{dx}{dt} = Ax \]
then $P^{-1}v(t)$ is a solution of
\[\frac{dx}{dt} = Bx, \]
where
\[v(t) = \begin{bmatrix} v_1(t) \\ v_2(t) \\ \vdots \\ v_n(t) \end{bmatrix} \quad \text{and} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}. \]

A5.2 Let W_1 and W_2 be two subspaces of \mathbb{R}^4 given by
\[W_1 = \text{Span}\{(1, 1, 0, 0), (1, 0, 1, 0)\} \] and
\[W_2 = \{(x_1, x_2, x_3, x_4) : x_1 - x_2 = x_3 + x_4 = 0\}. \]
Do the following:
(a) Find bases for W_1^\perp, W_2^\perp and $(W_1 + W_2)^\perp$, respectively.
(b) Let $v = (1, -1, 1, 1)$. Find the projections of v onto W_1, W_2 and $W_1 + W_2$, respectively.

A5.3 Orthogonally diagonalize and find spectral decompositions of the following real symmetric matrices:
\[a) \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad b) \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \]

A5.4 Let A be a 3×3 real symmetric matrix with characteristic polynomial $(x - 1)(x - 2)^2$ and
\[\text{Nul}(A - 2I) = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}. \]
Find A.

1