Linear Algebra II Lecture 11

Xi Chen

1 University of Alberta

November 4, 2016
Outline

1. Eigenvalues, Eigenvectors, Characteristic Polynomials of Matrices

2. Diagonalization
Given an $n \times n$ matrix A,

- $\det(xI - A)$ is the characteristic polynomial of A. It is a polynomial of degree n and leading coefficient 1:

$$\det(xI - A) = x^n + a_1x^{n-1} + \ldots + a_n$$

where $a_n = \det(-A) = (-1)^n \det(A)$ and $a_1 = -\text{Tr}(A)$.

- The roots of $\det(xI - A)$ are the eigenvalues of A.

- For each eigenvalue λ, the space $\text{Nul}(\lambda I - A) \subset \mathbb{R}^n$ the eigenspace of A corresponding to λ and every nonzero vector $v \in \text{Nul}(\lambda I - A)$ is an eigenvector of A corresponding to λ:

$$v \in \text{Nul}(\lambda I - A) \iff (\lambda I - A)v = 0 \iff Av = \lambda v.$$
Given an $n \times n$ matrix A,

- $\det(xI - A)$ is the **characteristic polynomial** of A. It is a polynomial of degree n and leading coefficient 1:

\[
\det(xI - A) = x^n + a_1 x^{n-1} + \ldots + a_n
\]

where $a_n = \det(-A) = (-1)^n \det(A)$ and $a_1 = -\text{Tr}(A)$.

- The roots of $\det(xI - A)$ are the **eigenvalues** of A.

- For each eigenvalue λ, the space $\text{Nul}(\lambda I - A) \subset \mathbb{R}^n$ the **eigenspace** of A corresponding to λ and every nonzero vector $v \in \text{Nul}(\lambda I - A)$ is an **eigenvector** of A corresponding to λ:

\[
v \in \text{Nul}(\lambda I - A) \iff (\lambda I - A)v = 0 \iff Av = \lambda v.
\]
Given an $n \times n$ matrix A,

- $\det(xI - A)$ is the characteristic polynomial of A. It is a polynomial of degree n and leading coefficient 1:

$$
\det(xI - A) = x^n + a_1 x^{n-1} + \ldots + a_n
$$

where $a_n = \det(-A) = (-1)^n \det(A)$ and $a_1 = -\text{Tr}(A)$.

- The roots of $\det(xI - A)$ are the eigenvalues of A.

- For each eigenvalue λ, the space $\text{Nul}(\lambda I - A) \subset \mathbb{R}^n$ the eigenspace of A corresponding to λ and every nonzero vector $v \in \text{Nul}(\lambda I - A)$ is an eigenvector of A corresponding to λ:

$$
v \in \text{Nul}(\lambda I - A) \iff (\lambda I - A)v = 0 \iff Av = \lambda v.
$$
An alternative convention of CP is \(\det(A - xI) \):

\[
\det(A - xI) = (-1)^n \det(xI - A)
\]

\[
\det(A - \lambda I) = 0 \iff \det(\lambda I - A) = 0
\]

\[
\text{Nul}(A - \lambda I) = \text{Nul}(\lambda I - A)
\]

\[
(A - \lambda I)v = 0 \iff (\lambda I - A)v = 0
\]

Eigenvalues, eigenspaces and eigenvectors remain the same.
An alternative convention of CP is $\det(A - xI)$:

$$
\det(A - xI) = (-1)^n \det(xI - A)
$$

$$
\det(A - \lambda I) = 0 \iff \det(\lambda I - A) = 0
$$

$$
\text{Nul}(A - \lambda I) = \text{Nul}(\lambda I - A)
$$

$$
(A - \lambda I)v = 0 \iff (\lambda I - A)v = 0
$$

Eigenvalues, eigenspaces and eigenvectors remain the same.
An alternative convention of CP is \(\det(A - xl) \):

\[
\det(A - xl) = (-1)^n \det(xl - A)
\]

\[
\det(A - \lambda l) = 0 \iff \det(\lambda l - A) = 0
\]

\[
\text{Nul}(A - \lambda l) = \text{Nul}(\lambda l - A)
\]

\[
(A - \lambda l)v = 0 \iff (\lambda l - A)v = 0
\]

Eigenvalues, eigenspaces and eigenvectors remain the same.
An alternative convention of CP is \(\det(A - xI) \):
\[
\det(A - xI) = (-1)^n \det(xI - A)
\]

\[
\det(A - \lambda I) = 0 \iff \det(\lambda I - A) = 0
\]

\[
\text{Nul}(A - \lambda I) = \text{Nul}(\lambda I - A)
\]

\[
(A - \lambda I)\mathbf{v} = 0 \iff (\lambda I - A)\mathbf{v} = 0
\]

Eigenvalues, eigenspaces and eigenvectors remain the same.
Example

Find the eigenvalues, eigenvectors and characteristic polynomial of

\[A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \].

Computation of CP:

\[\det(xI - A) = \det \begin{bmatrix} x - 1 & -1 & -1 \\ -1 & x - 1 & -1 \\ -1 & -1 & x - 1 \end{bmatrix} \]

\[= (x - 1) \det \begin{bmatrix} x - 1 & -1 \\ -1 & x - 1 \end{bmatrix} - (-1) \det \begin{bmatrix} -1 & -1 \\ -1 & x - 1 \end{bmatrix} + (-1) \det \begin{bmatrix} -1 & -1 \\ x - 1 & -1 \end{bmatrix} = x^3 - 3x^2 = x^2(x - 3) \]
Example

Find the eigenvalues, eigenvectors and characteristic polynomial of

\[A = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}. \]

Computation of CP:

\[
\det(xI - A) = \det \begin{bmatrix}
x - 1 & -1 & -1 \\
-1 & x - 1 & -1 \\
-1 & -1 & x - 1
\end{bmatrix}
\]

\[
= (x - 1) \det \begin{bmatrix}
x - 1 & -1 \\
-1 & x - 1
\end{bmatrix} - (-1) \det \begin{bmatrix}
-1 & -1 \\
-1 & x - 1
\end{bmatrix}
\]

\[
+ (-1) \det \begin{bmatrix}
-1 & -1 \\
x - 1 & -1
\end{bmatrix} = x^3 - 3x^2 = x^2(x - 3)\]
Example

It has two eigenvalues 0 and 3 with eigenspaces:

\[\text{Nul}(A - 0I) = \text{Nul} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \text{Nul} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \text{Span} \left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\} \]

\[\text{Nul}(A - 3I) = \text{Nul} \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix} = \text{Nul} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\} \]
Example

It has two eigenvalues 0 and 3 with eigenspaces:

\[
\text{Nul}(A - 0I) = \text{Nul} \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix} = \text{Nul} \begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

= \text{Span} \left\{ \begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
-1 \\
0 \\
1
\end{bmatrix} \right\}

\[
\text{Nul}(A - 3I) = \text{Nul} \begin{bmatrix}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{bmatrix} = \text{Nul} \begin{bmatrix}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{bmatrix}
\]

= \text{Span} \left\{ \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} \right\}
Example

It has two eigenvalues 0 and 3 with eigenspaces:

\[
\text{Nul}(A - 0I) = \text{Nul} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \text{Nul} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \text{Span} \left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}
\]

\[
\text{Nul}(A - 3I) = \text{Nul} \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix} = \text{Nul} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}
\]
Similar Matrices

Two $n \times n$ matrices A and B are similar if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$, written as $A \sim B$.

If $A \sim B$, then

- $\det(A) = \det(B)$ and $\operatorname{Tr}(A) = \operatorname{Tr}(B)$;
- A and B have the same characteristic polynomials, i.e.,
 \[
 \det(xI - A) = \det(xI - B)
 \]
- A and B have the same eigenvalues;
- the eigenspaces of A and B have the same dimensions, i.e.,
 \[
 \dim \operatorname{Nul}(\lambda I - A) = \dim \operatorname{Nul}(\lambda I - B)
 \]
 for all λ.

Similar Matrices

Two $n \times n$ matrices A and B are similar if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$, written as $A \sim B$.

If $A \sim B$, then

- $\det(A) = \det(B)$ and $\text{Tr}(A) = \text{Tr}(B)$;
- A and B have the same characteristic polynomials, i.e.,
 \[
 \det(xI - A) = \det(xI - B)
 \]
- A and B have the same eigenvalues;
- the eigenspaces of A and B have the same dimensions, i.e.,
 \[
 \dim \text{Nul}(\lambda I - A) = \dim \text{Nul}(\lambda I - B)
 \]
 for all λ.
Similar Matrices

Two $n \times n$ matrices A and B are similar if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$, written as $A \sim B$.

If $A \sim B$, then

- $\det(A) = \det(B)$ and $\text{Tr}(A) = \text{Tr}(B)$;
- A and B have the same characteristic polynomials, i.e.,

$$\det(xI - A) = \det(xI - B)$$

- A and B have the same eigenvalues;
- the eigenspaces of A and B have the same dimensions, i.e.,

$$\dim \text{Nul}(\lambda I - A) = \dim \text{Nul}(\lambda I - B)$$

for all λ.

Xi Chen
Similar Matrices

Two $n \times n$ matrices A and B are similar if there exists an invertible $n \times n$ matrix P such that $B = P^{-1}AP$, written as $A \sim B$.

If $A \sim B$, then

- $\det(A) = \det(B)$ and $\text{Tr}(A) = \text{Tr}(B)$;
- A and B have the same characteristic polynomials, i.e.,

$$\det(xI - A) = \det(xI - B)$$

- A and B have the same eigenvalues;
- the eigenspaces of A and B have the same dimensions, i.e.,

$$\dim \text{Nul}(\lambda I - A) = \dim \text{Nul}(\lambda I - B)$$

for all λ.
An $n \times n$ matrix A is **diagonalizable** if A is similar to a diagonal matrix, i.e., there exists an invertible matrix P such that

$$P^{-1}AP = \begin{bmatrix}
\lambda_1 & & \\
& \lambda_2 & \\
& & \vdots \\
& & & \lambda_n
\end{bmatrix}. $$

If the above holds,

$$\det(xI - A) = (x - \lambda_1)(x - \lambda_2)\ldots(x - \lambda_n)$$

and $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A.
An $n \times n$ matrix A is **diagonalizable** if A is similar to a diagonal matrix, i.e., there exists an invertible matrix P such that

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \vdots \\ & & & \lambda_n \end{bmatrix}.$$

If the above holds,

$$\det(xI - A) = (x - \lambda_1)(x - \lambda_2)\ldots(x - \lambda_n)$$

and $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A.
Criterion of Diagonalization

Theorem

An \(n \times n \) matrix \(A \) is diagonalizable if and only if one of the following holds:

- \(A \) has \(n \) linearly independent eigenvectors.
- The sum of the dimensions of the eigenspaces of \(A \) is \(n \):
 \[
 \sum_{\lambda} \dim \text{Nul}(\lambda I - A) = n.
 \]

The eigenvectors associated to different eigenvalues are always linear independent. So \(A \) has \(n \) linearly independent eigenvectors if and only if the sum of the dimensions of the eigenspaces of \(A \) is \(n \).
An $n \times n$ matrix A is diagonalizable if and only if one of the following holds:

- A has n linearly independent eigenvectors.
- The sum of the dimensions of the eigenspaces of A is n:
 \[
 \sum_{\lambda} \dim \text{Nul}(\lambda I - A) = n.
 \]

The eigenvectors associated to different eigenvalues are always linear independent. So A has n linearly independent eigenvectors if and only if the sum of the dimensions of the eigenspaces of A is n.
Proof. If A is diagonalizable, there is an invertible P such that

$$P^{-1}AP = \begin{bmatrix}
\lambda_1 & & \\
& \lambda_2 & \\
& & \ddots \\
& & & \lambda_n
\end{bmatrix} \Rightarrow AP = P \begin{bmatrix}
\lambda_1 & & \\
& \lambda_2 & \\
& & \ddots \\
& & & \lambda_n
\end{bmatrix}$$

Let $P = [v_1 \ v_2 \ \ldots \ \ v_n]$. Then

$$AP = [Av_1 \ Av_2 \ \ldots \ \ Av_n] = [\lambda_1 v_1 \ \lambda_2 v_2 \ \ldots \ \lambda_n v_n] = PD.$$

Therefore, $Av_i = \lambda_i v_i$. And since P is invertible, v_1, v_2, \ldots, v_n are linearly independent eigenvectors of A.
Proof. If A is diagonalizable, there is an invertible P such that

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \\ & & & \lambda_n \end{bmatrix} \Rightarrow AP = P \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \\ & & & \lambda_n \end{bmatrix}$$

Let $P = \begin{bmatrix} v_1 & v_2 & \ldots & v_n \end{bmatrix}$. Then

$$AP = \begin{bmatrix} Av_1 & Av_2 & \ldots & Av_n \end{bmatrix} = \begin{bmatrix} \lambda_1 v_1 & \lambda_2 v_2 & \ldots & \lambda_n v_n \end{bmatrix} = PD.$$

Therefore, $Av_i = \lambda_i v_i$. And since P is invertible, v_1, v_2, \ldots, v_n are linearly independent eigenvectors of A.

Xu Chen
Proof. If A is diagonalizable, there is an invertible P such that

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \\ & & & \lambda_n \end{bmatrix} \Rightarrow AP = P \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \\ & & & \lambda_n \end{bmatrix}$$

Let $P = [v_1 \ v_2 \ \cdots \ \ v_n]$. Then

$$AP = [Av_1 \ Av_2 \ \cdots \ \ Av_n] = [\lambda_1 v_1 \ \lambda_2 v_2 \ \cdots \ \lambda_n v_n] = PD.$$

Therefore, $Av_i = \lambda_i v_i$. And since P is invertible, v_1, v_2, \ldots, v_n are linearly independent eigenvectors of A.

Xi Chen
Linear Algebra II Lecture 11
Proof. If A has n linearly independent eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$, we let $P = [\mathbf{v}_1 \ \mathbf{v}_2 \ \ldots \ \mathbf{v}_n]$. Then

$$AP = [A\mathbf{v}_1 \ A\mathbf{v}_2 \ \ldots \ A\mathbf{v}_n] = [\lambda_1 \mathbf{v}_1 \ \lambda_2 \mathbf{v}_2 \ \ldots \ \lambda_n \mathbf{v}_n] = PD.$$

Since $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are linearly independent, P is invertible. So

$$P^{-1}AP = D = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \vdots \\ & & & \lambda_n \end{bmatrix}.$$
Criterion of Diagonalization

Proof. If A has n linearly independent eigenvectors v_1, v_2, \ldots, v_n, we let $P = [v_1 \ v_2 \ \ldots \ v_n]$. Then

$$AP = [Av_1 \ Av_2 \ \ldots \ Av_n] = [\lambda_1 v_1 \ \lambda_2 v_2 \ \ldots \ \lambda_n v_n] = PD.$$

Since v_1, v_2, \ldots, v_n are linearly independent, P is invertible. So

$$P^{-1}AP = D = \begin{bmatrix} \lambda_1 \\ & \lambda_2 \\ & & \ldots \\ & & & \lambda_n \end{bmatrix}.$$
Corollary

An $n \times n$ matrix A with n distinct eigenvalues is diagonalizable.

Proof. Let $\lambda_1, \lambda_2, ..., \lambda_n$ be the eigenvalues of A and $v_1, v_2, ..., v_n$ be n eigenvectors of A associated to $\lambda_1, \lambda_2, ..., \lambda_n$. Since eigenvectors associated to different eigenvalues are linearly independent, $v_1, v_2, ..., v_n$ are linearly independent. So A is diagonalizable.

Theorem

Every real symmetric matrix is diagonalizable.
An $n \times n$ matrix A with n distinct eigenvalues is diagonalizable.

Proof. Let $\lambda_1, \lambda_2, ..., \lambda_n$ be the eigenvalues of A and $v_1, v_2, ..., v_n$ be n eigenvectors of A associated to $\lambda_1, \lambda_2, ..., \lambda_n$. Since eigenvectors associated to different eigenvalues are linearly independent, $v_1, v_2, ..., v_n$ are linearly independent. So A is diagonalizable.

Every real symmetric matrix is diagonalizable.
Diagonalizable Matrices

Corollary

An $n \times n$ matrix A with n distinct eigenvalues is diagonalizable.

Proof. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the eigenvalues of A and v_1, v_2, \ldots, v_n be n eigenvectors of A associated to $\lambda_1, \lambda_2, \ldots, \lambda_n$. Since eigenvectors associated to different eigenvalues are linearly independent, v_1, v_2, \ldots, v_n are linearly independent. So A is diagonalizable.

Theorem

Every real symmetric matrix is diagonalizable.
Example

Is

\[A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \]
diagonalizable? If it is, find invertible \(P \) such that \(P^{-1}AP \) is diagonal.

Solution. Since \(\dim \text{Nul}(A - 0I) + \dim \text{Nul}(A - 3I) = 3 \), \(A \) is diagonalizable.

It has 3 linearly independent eigenvectors \(\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \) and \(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \). So we let \(P = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \) and \(P^{-1}AP = \begin{bmatrix} 0 & 0 \\ 0 & 3 \end{bmatrix} \).
Example

Is

$$A = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}$$

diagonalizable? If it is, find invertible P such that $P^{-1}AP$ is diagonal.

Solution. Since $\dim \text{Nul}(A - 0I) + \dim \text{Nul}(A - 3I) = 3$, A is diagonalizable.

It has 3 linearly independent eigenvectors $\begin{bmatrix}-1 \\ 1 \\ 0\end{bmatrix}$, $\begin{bmatrix}-1 \\ 0 \\ 1\end{bmatrix}$, and $\begin{bmatrix}1 \\ 1 \\ 1\end{bmatrix}$. So we let $P = \begin{bmatrix}-1 & -1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1\end{bmatrix}$ and $P^{-1}AP = \begin{bmatrix}0 & 0 \\
0 & 3\end{bmatrix}$.

Xi Chen

Linear Algebra II Lecture 11
Example

Is

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

diagonalizable? If it is, find invertible P such that $P^{-1}AP$ is diagonal.

Solution. Since $\text{dim Nul}(A - 0I) + \text{dim Nul}(A - 3I) = 3$, A is diagonalizable.

It has 3 linearly independent eigenvectors $\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. So we let $P = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ and $P^{-1}AP = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$.
Example

Is \(A = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \) diagonalizable? If it is, find invertible \(P \) such that \(P^{-1}AP \) is diagonal.

Solution. The characteristic polynomial of \(A \) is

\[
\det(xI - A) = \det \begin{bmatrix} x - 1 & -1 \\ 1 & x + 1 \end{bmatrix} = (x - 1)(x + 1) + 1 = x^2.
\]

So it has one eigenvalue 0 with eigenspace

\[
\text{Nul}(A - 0I) = \text{Nul} \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} = \text{Span} \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}.
\]

Since \(\dim \text{Nul}(A - 0I) = 1 < 2 \), \(A \) is not diagonalizable.
Example

Is \(A = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \) diagonalizable? If it is, find invertible \(P \) such that \(P^{-1}AP \) is diagonal.

Solution. The characteristic polynomial of \(A \) is

\[
\det(xI - A) = \det \begin{bmatrix} x - 1 & -1 \\ 1 & x + 1 \end{bmatrix} = (x - 1)(x + 1) + 1 = x^2.
\]

So it has one eigenvalue 0 with eigenspace

\[
\text{Nul}(A - 0I) = \text{Nul} \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} = \text{Span} \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}.
\]

Since \(\dim \text{Nul}(A - 0I) = 1 < 2 \), \(A \) is not diagonalizable.
Is \(A = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \) diagonalizable? If it is, find invertible \(P \) such that \(P^{-1}AP \) is diagonal.

Solution. The characteristic polynomial of \(A \) is

\[
\det(xI - A) = \det \begin{bmatrix} x - 1 & -1 \\ 1 & x + 1 \end{bmatrix} = (x - 1)(x + 1) + 1 = x^2.
\]

So it has one eigenvalue 0 with eigenspace

\[
\text{Nul}(A - 0I) = \text{Nul} \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} = \text{Span} \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}.
\]

Since \(\dim \text{Nul}(A - 0I) = 1 < 2 \), \(A \) is not diagonalizable.
Example

Find x, y, z such that $A = \begin{pmatrix} 2 & x & y \\ 2 & z \\ 2 \end{pmatrix}$ is diagonalizable.

Solution. A has only one eigenvalue 2. So it is diagonalizable if and only if

$$\dim \text{Nul}(A - 2I) = 3.$$

By Rank Theorem,

$$\dim \text{Nul}(A - 2I) + \text{rank}(A - 2I) = 3.$$

So $\dim \text{Nul}(A - 2I) = 3$ if and only if $\text{rank}(A - 2I) = 0$. Therefore, A is diagonalizable if and only if $\text{rank}(A - 2I) = 0$, i.e., $A - 2I = 0$. So $A = 2I$ and $x = y = z = 0$.
Example

Find x, y, z such that $A = \begin{bmatrix} 2 & x & y \\ 2 & z & \end{bmatrix}$ is diagonalizable.

Solution. A has only one eigenvalue 2. So it is diagonalizable if and only if

$$\dim \text{Nul}(A - 2I) = 3.$$

By Rank Theorem,

$$\dim \text{Nul}(A - 2I) + \text{rank}(A - 2I) = 3.$$

So $\dim \text{Nul}(A - 2I) = 3$ if and only if $\text{rank}(A - 2I) = 0$. Therefore, A is diagonalizable if and only if $\text{rank}(A - 2I) = 0$, i.e., $A - 2I = 0$. So $A = 2I$ and $x = y = z = 0$.

Xi Chen
Linear Algebra II Lecture 11
Example

Find x, y, z such that $A = \begin{bmatrix} 2 & x & y \\ 2 & z \\ 2 \end{bmatrix}$ is diagonalizable.

Solution. A has only one eigenvalue 2. So it is diagonalizable if and only if

$$\dim \text{Nul}(A - 2I) = 3.$$

By Rank Theorem,

$$\dim \text{Nul}(A - 2I) + \text{rank}(A - 2I) = 3.$$

So $\dim \text{Nul}(A - 2I) = 3$ if and only if $\text{rank}(A - 2I) = 0$. Therefore, A is diagonalizable if and only if $\text{rank}(A - 2I) = 0$, i.e., $A - 2I = 0$. So $A = 2I$ and $x = y = z = 0$.
Example

Find x, y, z such that $A = \begin{bmatrix} 2 & x & y \\ 2 & z & \end{bmatrix}$ is diagonalizable.

Solution. A has only one eigenvalue 2. So it is diagonalizable if and only if

$$\dim \text{Nul}(A - 2I) = 3.$$

By Rank Theorem,

$$\dim \text{Nul}(A - 2I) + \text{rank}(A - 2I) = 3.$$

So $\dim \text{Nul}(A - 2I) = 3$ if and only if $\text{rank}(A - 2I) = 0$. Therefore, A is diagonalizable if and only if $\text{rank}(A - 2I) = 0$, i.e., $A - 2I = 0$. So $A = 2I$ and $x = y = z = 0$.

Xi Chen
Linear Algebra II Lecture 11
Example

Find x, y, z such that $A = \begin{bmatrix} 2 & x & y \\ 2 & z & \end{bmatrix}$ is diagonalizable.

Solution. Suppose that $P^{-1}AP = D$ is diagonal for some invertible P.
Since the characteristic polynomial of A is $(x - 2)^3$, D must be

$$D = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = 2I.$$

Therefore,

$$P^{-1}AP = D \Rightarrow A = PDP^{-1} = P(2I)P^{-1} = 2PIP^{-1} = 2I.$$

So $x = y = z = 0$.
Example

Find \(x, y, z \) such that \(A = \begin{bmatrix} 2 & x & y \\ 2 & z & 2 \end{bmatrix} \) is diagonalizable.

Solution. Suppose that \(P^{-1}AP = D \) is diagonal for some invertible \(P \).
Since the characteristic polynomial of \(A \) is \((x - 2)^3\), \(D \) must be
\[
D = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = 2I.
\]
Therefore,
\[
P^{-1}AP = D \Rightarrow A = PDP^{-1} = P(2I)P^{-1} = 2PIP^{-1} = 2I.
\]
So \(x = y = z = 0 \).
Example

Find x, y, z such that $A = \begin{bmatrix} 2 & x & y \\ 2 & z & 2 \end{bmatrix}$ is diagonalizable.

Solution. Suppose that $P^{-1}AP = D$ is diagonal for some invertible P.

Since the characteristic polynomial of A is $(x - 2)^3$, D must be

$$D = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = 2I.$$

Therefore,

$$P^{-1}AP = D \Rightarrow A = PDP^{-1} = P(2I)P^{-1} = 2PIP^{-1} = 2I.$$

So $x = y = z = 0$.
Suppose that $P^{-1}AP = D$. Then

$$(P^{-1}AP)^n = D^n \Rightarrow P^{-1}A^nP = D^n \Rightarrow A^n = P^{-1}D^nP.$$

If D is diagonal, then

$$A^n = P^{-1} \begin{bmatrix}
\lambda_1 & \lambda_2 & \ldots & \lambda_n \\
\lambda_1 & \lambda_2 & \ldots & \lambda_n \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_1 & \lambda_2 & \ldots & \lambda_n
\end{bmatrix}^n P = P^{-1} \begin{bmatrix}
\lambda_1^n & \lambda_2^n & \ldots & \lambda_n^n \\
\lambda_1^n & \lambda_2^n & \ldots & \lambda_n^n \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_1^n & \lambda_2^n & \ldots & \lambda_n^n
\end{bmatrix} P$$
Example

Find a formula for A^n, where $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.

Solution. A has eigenvalues 1 and 3 with eigenvectors $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. So $P^{-1}AP = D$ for

$$P = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Then

$$A^n = PD^nP^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3^n \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}^{-1} = \frac{1}{2} \begin{bmatrix} 3^n + 1 & 3^n - 1 \\ 3^n - 1 & 3^n + 1 \end{bmatrix}.$$
Example

Find a formula for A^n, where $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.

Solution. A has eigenvalues 1 and 3 with eigenvectors $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. So $P^{-1}AP = D$ for

$$P = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Then

$$A^n = PD^nP^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3^n \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}^{-1} = \frac{1}{2} \begin{bmatrix} 3^n + 1 & 3^n - 1 \\ 3^n - 1 & 3^n + 1 \end{bmatrix}.$$
Example

Find a formula for A^n, where $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.

Solution. A has eigenvalues 1 and 3 with eigenvectors $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. So $P^{-1}AP = D$ for

$$P = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Then

$$A^n = PD^nP^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3^n \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}^{-1} = \frac{1}{2} \begin{bmatrix} 3^n + 1 & 3^n - 1 \\ 3^n - 1 & 3^n + 1 \end{bmatrix}.$$
Example

Find a formula for A^n, where $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.

Solution. A has eigenvalues 1 and 3 with eigenvectors $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. So $P^{-1}AP = D$ for

$$P = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \text{ and } D = \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix}$$

Then

$$A^n = PD^nP^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3^n \\ -1 & 1 \end{bmatrix}^{-1} = \frac{1}{2} \begin{bmatrix} 3^n + 1 & 3^n - 1 \\ 3^n - 1 & 3^n + 1 \end{bmatrix}.$$

Xi Chen