Outline

1. Linear Dependence
Example. Given \((1, 0), (0, 1)\) and \((1, 1)\) in \(\mathbb{R}^2\), clearly,

\[
\text{Span}\{(1, 0), (0, 1), (1, 1)\} = \text{Span}\{(1, 0), (0, 1)\} = \text{Span}\{(1, 0), (1, 1)\} = \text{Span}\{(0, 1), (1, 1)\}
\]

So one vector among \((1, 0), (0, 1), (1, 1)\) is “redundant”.

Definition A

Let \(V\) be a vector space over \(\mathbb{R}\). A nonempty indexed set \(S = \{v_1, v_2, \ldots, v_n, \ldots\}\) of vectors in \(V\) is **linearly independent** if

\[
\text{Span}(S) \neq \text{Span}(S \setminus \{v_i\})
\]

for all \(v_i \in S\). And it is **linearly dependent** if

\[
\text{Span}(S) = \text{Span}(S \setminus \{v_i\})
\]

for some \(v_i \in S\).
Linear Dependence in Vector Spaces

Example. Given \((1, 0), (0, 1)\) and \((1, 1)\) in \(\mathbb{R}^2\), clearly,

\[
\text{Span}\{(1, 0), (0, 1), (1, 1)\} = \text{Span}\{(1, 0), (0, 1)\}
\]
\[
= \text{Span}\{(1, 0), (1, 1)\} = \text{Span}\{(0, 1), (1, 1)\}
\]

So one vector among \((1, 0), (0, 1), (1, 1)\) is “redundant”.

Definition A

Let \(V\) be a vector space over \(\mathbb{R}\). A nonempty indexed set \(S = \{v_1, v_2, \ldots, v_n, \ldots\}\) of vectors in \(V\) is *linearly independent* if

\[
\text{Span}(S) \neq \text{Span}(S\setminus\{v_i\})
\]

for all \(v_i \in S\). And it is *linearly dependent* if

\[
\text{Span}(S) = \text{Span}(S\setminus\{v_i\})
\]

for some \(v_i \in S\).
Definition B

Let V be a vector space over \mathbb{R}. A nonempty indexed set $S = \{v_1, v_2, ..., v_n\}$ of vectors in V is *linearly dependent* if there are $c_1, c_2, ..., c_n \in \mathbb{R}$, not all zeros, such that

$$c_1 v_1 + c_2 v_2 + ... + c_n v_n = 0.$$

Otherwise, S is linearly independent.

Theorem (A \iff B)

Let $S = \{v_1, v_2, ..., v_n\}$ be an indexed set of vectors in V. Then $\text{Span}(S) = \text{Span}(S \setminus \{v_i\})$ for some $v_i \in S$ if and only if there are $c_1, c_2, ..., c_n \in \mathbb{R}$, not all zeros, such that

$$c_1 v_1 + c_2 v_2 + ... + c_n v_n = 0.$$
Definition B

Let V be a vector space over \mathbb{R}. A nonempty indexed set $S = \{v_1, v_2, ..., v_n\}$ of vectors in V is *linearly dependent* if there are $c_1, c_2, ..., c_n \in \mathbb{R}$, not all zeros, such that

$$c_1v_1 + c_2v_2 + ... + c_nv_n = 0.$$

Otherwise, S is linearly independent.

Theorem (A \iff B)

Let $S = \{v_1, v_2, ..., v_n\}$ be an indexed set of vectors in V. Then $\text{Span}(S) = \text{Span}(S\setminus\{v_i\})$ for some $v_i \in S$ if and only if there are $c_1, c_2, ..., c_n \in \mathbb{R}$, not all zeros, such that $c_1v_1 + c_2v_2 + ... + c_nv_n = 0$.
Proof.

“⇒” Span(S) = Span(S\{v_i\}) ⇒ v_i ∈ Span(S\{v_i\}). That is, v_i is a linear combination of v_j for j ≠ i:

\[v_i = \sum_{j \neq i} c_j v_j \]

for some \(c_j \in \mathbb{R} \). Therefore,

\[\sum_{j \neq i} c_j v_j - v_i = 0 \Rightarrow c_1 v_1 + c_2 v_2 + \ldots + c_n v_n = 0 \]

by letting \(c_i = -1 \). So \(v_1, v_2, \ldots, v_n \) are linearly dependent. \(\square \)
Proof of A \iff B

“\Leftarrow”.

v_1, v_2, \ldots, v_n are linearly dependent \Rightarrow there exist c_1, c_2, \ldots, c_n, not all zero, such that

$$c_1v_1 + c_2v_2 + \ldots + c_nv_n = 0.$$

Suppose that $c_i \neq 0$ for some i. Then

$$c_i v_i = -\sum_{j \neq i} c_j v_j \Rightarrow v_i = -\sum_{j \neq i} \frac{c_j}{c_i} v_j$$

and $v_i \in \text{Span}(S \setminus \{v_i\})$. So

$$S \subset \text{Span}(S \setminus \{v_i\}) \Rightarrow \text{Span}(S) \subset \text{Span}(S \setminus \{v_i\})$$

and $\text{Span}(S) = \text{Span}(S \setminus \{v_i\})$.

\Box
Proof of $A \iff B$

“\iff”.

v_1, v_2, \ldots, v_n are linearly dependent \Rightarrow there exist c_1, c_2, \ldots, c_n, not all zero, such that

$$c_1v_1 + c_2v_2 + \ldots + c_nv_n = 0.$$

Suppose that $c_i \neq 0$ for some i. Then

$$c_iv_i = -\sum_{j \neq i} c_jv_j \Rightarrow v_i = -\sum_{j \neq i} \frac{c_j}{c_i}v_j$$

and $v_i \in \text{Span}(S\{v_i})$. So

$$S \subset \text{Span}(S\{v_i}) \Rightarrow \text{Span}(S) \subset \text{Span}(S\{v_i})$$

and $\text{Span}(S) = \text{Span}(S\{v_i})$.
Proof of \(A \Leftrightarrow B \)

“\(\Leftarrow \).”

\(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \) are linearly dependent \(\Rightarrow \) there exist \(c_1, c_2, \ldots, c_n \), not all zero, such that

\[c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n = 0. \]

Suppose that \(c_i \neq 0 \) for some \(i \). Then

\[c_i \mathbf{v}_i = - \sum_{j \neq i} c_j \mathbf{v}_j \Rightarrow \mathbf{v}_i = - \sum_{j \neq i} \frac{c_j}{c_i} \mathbf{v}_j \]

and \(\mathbf{v}_i \in \text{Span}(S \setminus \{\mathbf{v}_i\}) \). So

\[S \subset \text{Span}(S \setminus \{\mathbf{v}_i\}) \Rightarrow \text{Span}(S) \subset \text{Span}(S \setminus \{\mathbf{v}_i\}) \]

and \(\text{Span}(S) = \text{Span}(S \setminus \{\mathbf{v}_i\}) \).
The above theorem is equivalent to saying that \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \) are linearly dependent if and only if one of \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \) is a linear combination of the rest.

- \(\mathbf{0} \in S \Rightarrow S \) is linearly dependent; e.g., \(\{\mathbf{0}, \mathbf{v}\} \) is always linearly dependent since \(1 \cdot \mathbf{0} + 0 \cdot \mathbf{v} = \mathbf{0} \).
- \(S' \subset S \) and \(S \) is linearly independent \(\Rightarrow \) \(S' \) is linearly independent; e.g., if \(\{\mathbf{u}, \mathbf{v}, \mathbf{w}\} \) is linearly independent, then \(\{\mathbf{u}, \mathbf{v}\} \) is linearly independent.
- \(S \subset S' \) and \(S \) is linearly dependent \(\Rightarrow \) \(S' \) is linearly dependent; e.g., if \(\{\mathbf{u}, \mathbf{v}\} \) is linearly dependent, then \(\{\mathbf{u}, \mathbf{v}, \mathbf{w}\} \) is linearly dependent for all \(\mathbf{w} \).
The above theorem is equivalent to saying that $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are linearly dependent if and only if one of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is a linear combination of the rest.

1. $\mathbf{0} \in S \Rightarrow S$ is linearly dependent; e.g., $\{\mathbf{0}, \mathbf{v}\}$ is always linearly dependent since $1 \cdot \mathbf{0} + 0 \cdot \mathbf{v} = \mathbf{0}$.

2. $S' \subset S$ and S is linearly independent \Rightarrow S' is linearly independent; e.g., if $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent, then $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent.

3. $S' \subset S$ and S is linearly dependent \Rightarrow S' is linearly dependent; e.g., if $\{\mathbf{u}, \mathbf{v}\}$ is linearly dependent, then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent for all \mathbf{w}.
The above theorem is equivalent to saying that $v_1, v_2, ..., v_n$ are linearly dependent if and only if one of $v_1, v_2, ..., v_n$ is a linear combination of the rest.

- $0 \in S \Rightarrow S$ is linearly dependent; e.g., $\{0, v\}$ is always linearly dependent since $1 \cdot 0 + 0 \cdot v = 0$.

- $S' \subset S$ and S is linearly independent $\Rightarrow S'$ is linearly independent; e.g., if $\{u, v, w\}$ is linearly independent, then $\{u, v\}$ is linearly independent.

- $S \subset S'$ and S is linearly dependent $\Rightarrow S'$ is linearly dependent; e.g., if $\{u, v\}$ is linearly dependent, then $\{u, v, w\}$ is linearly dependent for all w.
The above theorem is equivalent to saying that $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are linearly dependent if and only if one of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is a linear combination of the rest.

- $\mathbf{0} \in S \Rightarrow S$ is linearly dependent; e.g., $\{\mathbf{0}, \mathbf{v}\}$ is always linearly dependent since $1 \cdot \mathbf{0} + 0 \cdot \mathbf{v} = \mathbf{0}$.

- $S' \subset S$ and S is linearly independent $\Rightarrow S'$ is linearly independent; e.g., if $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent, then $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent.

- $S \subset S'$ and S is linearly dependent $\Rightarrow S'$ is linearly dependent; e.g., if $\{\mathbf{u}, \mathbf{v}\}$ is linearly dependent, then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent for all \mathbf{w}.
Theorem

\(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \in \mathbb{R}^n \) are linearly independent if and only if one of the following holds:

- The \(m \times n \) matrix
 \[
 A = \begin{bmatrix}
 \mathbf{v}_1 \\
 \mathbf{v}_2 \\
 \vdots \\
 \mathbf{v}_m
 \end{bmatrix}
 \]
 has rank \(m \).

- \(A^T \mathbf{x} = 0 \) has a unique solution.

- There exists an \(m \times m \) matrix \(B \) such that \(BA \) is a row echelon matrix without zero rows.

- There exists an \(n \times n \) matrix \(B \) such that \(AB = [I \ 0] \).
Theorem

\(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \in \mathbb{R}^n \) are linearly independent if and only if one of the following holds:

- The \(m \times n \) matrix

\[
A = \begin{bmatrix}
\mathbf{v}_1 \\
\mathbf{v}_2 \\
\vdots \\
\mathbf{v}_m
\end{bmatrix}
\]

has rank \(m \).

- \(A^T \mathbf{x} = 0 \) has a unique solution.

- There exists an \(m \times m \) matrix \(B \) such that \(BA \) is a row echelon matrix without zero rows.

- There exists an \(n \times n \) matrix \(B \) such that \(AB = [I \ 0] \).
Linear Dependence in \mathbb{R}^n

Theorem

$v_1, v_2, \ldots, v_m \in \mathbb{R}^n$ are linearly independent if and only if one of the following holds:

- The $m \times n$ matrix

 $A = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix}$

 has rank m.

- $A^T x = 0$ has a unique solution.

- There exists an $m \times m$ matrix B such that BA is a row echelon matrix without zero rows.

- There exists an $n \times n$ matrix B such that $AB = [I \ 0]$.

Xi Chen
Linear Algebra II Lecture 4
Theorem

\(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \in \mathbb{R}^n\) are linearly independent if and only if one of the following holds:

- The \(m \times n\) matrix

\[
A = \begin{bmatrix}
\mathbf{v}_1 \\
\mathbf{v}_2 \\
\vdots \\
\mathbf{v}_m
\end{bmatrix}
\]

has rank \(m\).

- \(A^T\mathbf{x} = 0\) has a unique solution.

- There exists an \(m \times m\) matrix \(B\) such that \(BA\) is a row echelon matrix without zero rows.

- There exists an \(n \times n\) matrix \(B\) such that \(AB = [I \ 0]\).
Theorem

\(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \in \mathbb{R}^n \) are linearly independent if and only if one of the following holds:

- The \(m \times n \) matrix

\[
A = \begin{bmatrix}
\mathbf{v}_1 \\
\mathbf{v}_2 \\
\vdots \\
\mathbf{v}_m
\end{bmatrix}
\]

has rank \(m \).

- \(A^T \mathbf{x} = 0 \) has a unique solution.

- There exists an \(m \times m \) matrix \(B \) such that \(BA \) is a row echelon matrix without zero rows.

- There exists an \(n \times n \) matrix \(B \) such that \(AB = \begin{bmatrix} I & 0 \end{bmatrix} \).
Examples of Linear Dependence in \mathbb{R}^n

- $(1, 1, 1, 1), (1, 2, 3, 4), (2, 3, 4, 5)$ are linearly dependent in \mathbb{R}^4 since

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \text{rank} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \end{bmatrix} = 2 < 3.$$
(1, 1, 1, 1), (1, 2, 3, 4), (2, 3, 4, 5) are linearly dependent in \mathbb{R}^4 since

$$
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0 & 1 & 2 & 3 \\
0 & 1 & 2 & 3
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{bmatrix}
$$

$\Rightarrow \text{rank } \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5
\end{bmatrix} = 2 < 3.$
$\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \in \mathbb{R}^n$ are linearly dependent if $m > n$.

If $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \neq 0$ are orthogonal to each other, i.e., $\langle \mathbf{v}_i, \mathbf{v}_j \rangle \neq 0$ if $i = j$ and 0 if $i \neq j$, then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ are linearly independent since

$$AA^T = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^T & \mathbf{v}_2^T & \ldots & \mathbf{v}_m^T \end{bmatrix} = [\langle \mathbf{v}_i, \mathbf{v}_j \rangle]$$

$\Rightarrow \text{rank}(AA^T) = m \Rightarrow \text{rank}(A) \geq \text{rank}(AA^T) = m$ and hence $\text{rank}(A) = m$. In particular, the standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ is linearly independent.
Examples of Linear Dependence in \mathbb{R}^n

- $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \in \mathbb{R}^n$ are linearly dependent if $m > n$.

- If $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \neq 0$ are orthogonal to each other, i.e., $\langle \mathbf{v}_i, \mathbf{v}_j \rangle \neq 0$ if $i = j$ and 0 if $i \neq j$, then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ are linearly independent since

$$AA^T = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^T & \mathbf{v}_2^T & \ldots & \mathbf{v}_m^T \end{bmatrix} = [\langle \mathbf{v}_i, \mathbf{v}_j \rangle]$$

$\Rightarrow \text{rank}(AA^T) = m \Rightarrow \text{rank}(A) \geq \text{rank}(AA^T) = m$ and hence $\text{rank}(A) = m$. In particular, the standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ is linearly independent.
Examples of Linear Dependence in \mathbb{R}^n

- $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \in \mathbb{R}^n$ are linearly dependent if $m > n$.
- If $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \neq 0$ are orthogonal to each other, i.e., $\langle \mathbf{v}_i, \mathbf{v}_j \rangle \neq 0$ if $i = j$ and 0 if $i \neq j$, then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ are linearly independent since

$$AA^T = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^T & \mathbf{v}_2^T & \ldots & \mathbf{v}_m^T \end{bmatrix} = [\langle \mathbf{v}_i, \mathbf{v}_j \rangle]$$

$\Rightarrow \text{rank}(AA^T) = m \Rightarrow \text{rank}(A) \geq \text{rank}(AA^T) = m$ and hence $\text{rank}(A) = m$. In particular, the standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ is linearly independent.
Examples of Linear Dependence in \mathbb{R}^n

- $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \in \mathbb{R}^n$ are linearly dependent if $m > n$.
- If $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \neq 0$ are orthogonal to each other, i.e., $\langle \mathbf{v}_i, \mathbf{v}_j \rangle \neq 0$ if $i = j$ and 0 if $i \neq j$, then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ are linearly independent since

$$AA^T = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^T \\ \mathbf{v}_2^T \\ \vdots \\ \mathbf{v}_m^T \end{bmatrix} = [\langle \mathbf{v}_i, \mathbf{v}_j \rangle]$$

$\Rightarrow \text{rank}(AA^T) = m \Rightarrow \text{rank}(A) \geq \text{rank}(AA^T) = m$ and hence $\text{rank}(A) = m$. In particular, the standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ is linearly independent.
Let a_1, a_2, \ldots, a_n be n distinct numbers. Then

$(1, a_1, a_1^2, \ldots, a_1^{n-1}), (1, a_2, a_2^2, \ldots, a_2^{n-1}), \ldots,$

$(1, a_n, a_n^2, \ldots, a_n^{n-1})$ are linearly independent in \mathbb{R}^n.

Otherwise, the $n \times n$ matrix

$$A = \begin{bmatrix}
1 & a_1 & a_1^2 & \ldots & a_1^{n-1} \\
1 & a_2 & a_2^2 & \ldots & a_2^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_n & a_n^2 & \ldots & a_n^{n-1}
\end{bmatrix}$$

is singular so $Ax = 0$ for some $x \neq 0$:
Examples of Linear Dependence in \mathbb{R}^n

Let a_1, a_2, \ldots, a_n be n distinct numbers. Then $(1, a_1, a_1^2, \ldots, a_1^{n-1})$, $(1, a_2, a_2^2, \ldots, a_2^{n-1})$, ..., $(1, a_n, a_n^2, \ldots, a_n^{n-1})$ are linearly independent in \mathbb{R}^n. Otherwise, the $n \times n$ matrix

$$A = \begin{bmatrix}
1 & a_1 & a_1^2 & \ldots & a_1^{n-1} \\
1 & a_2 & a_2^2 & \ldots & a_2^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & a_n & a_n^2 & \ldots & a_n^{n-1}
\end{bmatrix}$$

is singular so $Ax = 0$ for some $x \neq 0$:
Examples of Linear Dependence in \mathbb{R}^n

\[
\begin{bmatrix}
1 & a_1 & a_1^2 & \ldots & a_1^{n-1} \\
1 & a_2 & a_2^2 & \ldots & a_2^{n-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & a_n & a_n^2 & \ldots & a_n^{n-1}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2 \\
\vdots \\
c_n
\end{bmatrix} = 0 \Rightarrow c_1 + c_2 a_i + \ldots + c_n a_i^{n-1} = 0
\]

for $i = 1, 2, \ldots, n$. Let

\[f(x) = c_1 + c_2 x + \ldots + c_n x^{n-1}\]

Then $f(a_1) = f(a_2) = \ldots = f(a_n) = 0$. So $f(x)$ is divisible by $(x - a_1)(x - a_2)\ldots(x - a_n)$, which is impossible since $\deg f \leq n - 1$.
Examples of Linear Dependence in \mathbb{R}^n

\[
\begin{bmatrix}
1 & a_1 & a_1^2 & \ldots & a_1^{n-1} \\
1 & a_2 & a_2^2 & \ldots & a_2^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_n & a_n^2 & \ldots & a_n^{n-1}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2 \\
\vdots \\
c_n
\end{bmatrix}
= 0 \Rightarrow c_1 + c_2 a_i + \ldots + c_n a_i^{n-1} = 0
\]

for $i = 1, 2, \ldots, n$. Let

\[f(x) = c_1 + c_2 x + \ldots + c_n x^{n-1}\]

Then $f(a_1) = f(a_2) = \ldots = f(a_n) = 0$. So $f(x)$ is divisible by $(x - a_1)(x - a_2)\ldots(x - a_n)$, which is impossible since $\deg f \leq n - 1$.

Examples of Linear Dependence in \mathbb{R}^n

\[
\begin{bmatrix}
1 & a_1 & a_1^2 & \ldots & a_1^{n-1} \\
1 & a_2 & a_2^2 & \ldots & a_2^{n-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & a_n & a_n^2 & \ldots & a_n^{n-1}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2 \\
\vdots \\
c_n
\end{bmatrix}
= 0 \Rightarrow c_1 + c_2 a_i + \ldots + c_n a_i^{n-1} = 0
\]

for $i = 1, 2, \ldots, n$. Let

\[f(x) = c_1 + c_2 x + \ldots + c_n x^{n-1}\]

Then $f(a_1) = f(a_2) = \ldots = f(a_n) = 0$. So $f(x)$ is divisible by $(x - a_1)(x - a_2)\ldots(x - a_n)$, which is impossible since $\deg f \leq n - 1$.
Examples of Linear Dependence in \mathbb{R}^n

Let A be an $n \times n$ matrix, a_1, a_2, \ldots, a_m be m distinct eigenvalues of A with corresponding eigenvectors v_1, v_2, \ldots, v_m. Then v_1, v_2, \ldots, v_m are linearly independent in \mathbb{R}^n. Otherwise, there exist c_1, c_2, \ldots, c_m, not all zero, such that

$$c_1 v_1 + c_2 v_2 + \ldots + c_m v_m = 0.$$

Since $A v_1 = a_1 v_1$, $A v_2 = a_2 v_2$, ..., $A v_m = a_m v_m$,

$$A (c_1 v_1 + c_2 v_2 + \ldots + c_m v_m) = 0$$

$$\Rightarrow a_1 c_1 v_1 + a_2 c_2 v_2 + \ldots + a_m c_m v_m = 0$$

Multiplying by A^k, we obtain

$$a_1^k c_1 v_1 + a_2^k c_2 v_2 + \ldots + a_m^k c_m v_m = 0.$$
Let A be an $n \times n$ matrix, a_1, a_2, \ldots, a_m be m distinct eigenvalues of A with corresponding eigenvectors v_1, v_2, \ldots, v_m. Then v_1, v_2, \ldots, v_m are linearly independent in \mathbb{R}^n. Otherwise, there exist c_1, c_2, \ldots, c_m, not all zero, such that

$$c_1 v_1 + c_2 v_2 + \ldots + c_m v_m = 0.$$

Since $Av_1 = a_1 v_1$, $Av_2 = a_2 v_2$, ..., $Av_m = a_m v_m$,

$$A(c_1 v_1 + c_2 v_2 + \ldots + c_m v_m) = 0$$

$$\Rightarrow a_1 c_1 v_1 + a_2 c_2 v_2 + \ldots + a_m c_m v_m = 0$$

Multiplying by A^k, we obtain

$$a_1^k c_1 v_1 + a_2^k c_2 v_2 + \ldots + a_m^k c_m v_m = 0$$
Let A be an $n \times n$ matrix, a_1, a_2, \ldots, a_m be m distinct eigenvalues of A with corresponding eigenvectors v_1, v_2, \ldots, v_m. Then v_1, v_2, \ldots, v_m are linearly independent in \mathbb{R}^n. Otherwise, there exist c_1, c_2, \ldots, c_m, not all zero, such that

$$c_1 v_1 + c_2 v_2 + \ldots + c_m v_m = 0.$$

Since $A v_1 = a_1 v_1, A v_2 = a_2 v_2, \ldots, A v_m = a_m v_m,$

$$A(c_1 v_1 + c_2 v_2 + \ldots + c_m v_m) = 0$$

$$\Rightarrow a_1 c_1 v_1 + a_2 c_2 v_2 + \ldots + a_m c_m v_m = 0$$

Multiplying by A^k, we obtain

$$a_1^k c_1 v_1 + a_2^k c_2 v_2 + \ldots + a_m^k c_m v_m = 0$$
Let A be an $n \times n$ matrix, $a_1, a_2, ..., a_m$ be m distinct eigenvalues of A with corresponding eigenvectors $v_1, v_2, ..., v_m$. Then $v_1, v_2, ..., v_m$ are linearly independent in \mathbb{R}^n. Otherwise, there exist $c_1, c_2, ..., c_m$, not all zero, such that
\[
c_1 v_1 + c_2 v_2 + \ldots + c_m v_m = 0.
\]
Since $Av_1 = a_1 v_1$, $Av_2 = a_2 v_2$, ..., $Av_m = a_m v_m$,
\[
A(c_1 v_1 + c_2 v_2 + \ldots + c_m v_m) = 0
\]
$\Rightarrow a_1 c_1 v_1 + a_2 c_2 v_2 + \ldots + a_m c_m v_m = 0$

Multiplying by A^k, we obtain
\[
a_1^k c_1 v_1 + a_2^k c_2 v_2 + \ldots + a_m^k c_m v_m = 0
\]
Examples of Linear Dependence in \mathbb{R}^n

\[
\begin{align*}
&c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_m \mathbf{v}_m = 0 \\
&a_1 c_1 \mathbf{v}_1 + a_2 c_2 \mathbf{v}_2 + \ldots + a_m c_m \mathbf{v}_m = 0 \\
&\vdots \\
&a_1^{m-1} c_1 \mathbf{v}_1 + a_2^{m-1} c_2 \mathbf{v}_2 + \ldots + a_m^{m-1} c_m \mathbf{v}_m = 0 \\
\end{align*}
\]

\[
\begin{pmatrix}
1 & 1 & \ldots & 1 \\
a_1 & a_2 & \ldots & a_m \\
\vdots & \vdots & \ddots & \vdots \\
a_1^{m-1} & a_2^{m-1} & \ldots & a_m^{m-1}
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
\vdots \\
c_m
\end{pmatrix}
= 0
\]

Since B is nonsingular, $c_1 \mathbf{v}_1 = c_2 \mathbf{v}_2 = \ldots = c_m \mathbf{v}_m = 0$. This is impossible since $\mathbf{v}_i \neq 0$ and c_1, c_2, \ldots, c_m are not all zero.
Let A be an $n \times n$ matrix. Then $1, A, A^2, \ldots, A^n$ are linearly dependent in $M_{n\times n}(\mathbb{R})$ since

\[f(x) = \det(xI - A) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1} + x^n \]

be its characteristic polynomial. Then

\[f(A) = a_0 I + a_1 A + a_2 A^2 + \ldots + a_{n-1} A^{n-1} + A^n = 0 \]

e.g., for $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $A^2 - 5A - 2I = 0 \Rightarrow A^2, A, I$ are linearly dependent.
Let A be an $n \times n$ matrix. Then $1, A, A^2, \ldots, A^n$ are linearly dependent in $M_{n \times n}(\mathbb{R})$ since

Caley-Hamilton Theorem

Let A be an $n \times n$ matrix and

$$f(x) = \det(xI - A) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1} + x^n$$

be its characteristic polynomial. Then

$$f(A) = a_0 I + a_1 A + a_2 A^2 + \ldots + a_{n-1} A^{n-1} + A^n = 0$$

e.g., for $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $A^2 - 5A - 2I = 0 \Rightarrow A^2, A, I$ are linearly dependent.
Let $f_1(x), f_2(x), \ldots, f_m(x)$ be m polynomials of degree $< n$:

$$f_i(x) = a_{i1} + a_{i2}x + \ldots + a_{in}x^{n-1}$$

for $i = 1, 2, \ldots, m$. Then $c_1 f_1(x) + c_2 f_2(x) + \ldots + c_m f_m(x) = 0$ if and only if

$$\begin{align*}
 a_{11}c_1 + a_{21}c_2 + \ldots + a_{m1}c_m &= 0 \\
 a_{12}c_1 + a_{22}c_2 + \ldots + a_{m2}c_m &= 0 \\
 \vdots + \vdots + \ddots + \vdots &= \vdots \\
 a_{1n}c_1 + a_{2n}c_2 + \ldots + a_{mn}c_m &= 0
\end{align*}$$

$$\leftrightarrow$$

$$\begin{bmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \ldots & a_{mn}
\end{bmatrix}^T
\begin{bmatrix}
 c_1 \\
 c_2 \\
 \vdots \\
 c_m
\end{bmatrix} = 0$$
Therefore, \(f_1(x), f_2(x), \ldots, f_m(x) \) are linearly independent if and only if

\[
\begin{bmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \ldots & a_{mn}
\end{bmatrix}
\]

is a square matrix of order \(m \times m \) and its rank is equal to \(m \).

Choose \(m \) distinct numbers \(x_1, x_2, \ldots, x_m \) and let

\[
B = \begin{bmatrix}
 f_1(x_1) & f_1(x_2) & \ldots & f_1(x_m) \\
 f_2(x_1) & f_2(x_2) & \ldots & f_2(x_m) \\
 \vdots & \vdots & \ddots & \vdots \\
 f_m(x_1) & f_m(x_2) & \ldots & f_m(x_m)
\end{bmatrix}
\]
Therefore, \(f_1(x), f_2(x), \ldots, f_m(x) \) are linearly independent if and only if

\[
\begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
\]

has rank \(m \).

Choose \(m \) distinct numbers \(x_1, x_2, \ldots, x_m \) and let

\[
B = \begin{bmatrix}
 f_1(x_1) & f_1(x_2) & \cdots & f_1(x_m) \\
 f_2(x_1) & f_2(x_2) & \cdots & f_2(x_m) \\
 \vdots & \vdots & \ddots & \vdots \\
 f_m(x_1) & f_m(x_2) & \cdots & f_m(x_m)
\end{bmatrix}
\]
Linear Dependence in $\mathbb{R}[x]$

Therefore, $\text{rank}(A) \geq \text{rank}(B)$. If $\text{rank}(B) = m$, then f_1, f_2, \ldots, f_m are linearly independent. Caution: The converse fails.
Linear Dependence in $\mathbb{R}[x]$

Therefore, $\text{rank}(A) \geq \text{rank}(B)$. If $\text{rank}(B) = m$, then f_1, f_2, \ldots, f_m are linearly independent. Caution: The converse fails.