Math 225 Assignment #7
Due Mar. 14, 2014

(1) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation given by

$$T(x, y) = (3x + 4y, 4x - 3y).$$

(a) Find the characteristic polynomial, eigenvalues and eigenvectors of T.
(b) Find a basis B of \mathbb{R}^2 such that $[T]_{B,B}$ is a diagonal matrix.

(2) Let $M_{m \times n}(\mathbb{R})$ be the vector space of $m \times n$ real matrices and let $T : M_{2 \times 2}(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R})$ be the linear transformation given by

$$T(A) = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix} A$$

(a) Find the characteristic polynomial, eigenvalues and eigenvectors of T.
(b) Find a basis B of $M_{2 \times 2}(\mathbb{R})$ such that $[T]_{B,B}$ is a diagonal matrix.

(3) Let V be a vector space of dimension n and $T : V \to V$ be a linear transformation of rank 1. Show that the characteristic polynomial of T must be in the form of $x^n - ax^{n-1}$ for some constant $a \in \mathbb{R}$.

(4) Which of the following statements are true and which are false? Justify your answer.

(a) Let $T_1 : V \to V$ and $T_2 : V \to V$ be two linear transformations. If v_1 is an eigenvector of T_1 and v_2 is an eigenvector of T_2, then $v_1 + v_2$ is an eigenvector of $T_1 + T_2$.
(b) Let A and B be two $n \times n$ invertible matrices. Then AB and BA have the same characteristic polynomial.
(c) Let $T : V \to V$ be a linear transformation. If v is an eigenvector of T, it is also an eigenvector of T^2.
(d) Let $T : V \to V$ be a linear transformation. If v is an eigenvector of T^2, it is also an eigenvector of T^3.

(5) Let V be the vector space of real polynomials of degree ≤ 3 and $T : V \to V$ be the linear transformation given by

$$T(f(x)) = (x + 1)f'(x).$$

(a) Find the characteristic polynomial, eigenvalues and eigenvectors of T.
(b) Find a basis B of V such that $[T]_{B,B}$ is a diagonal matrix.
(6) Let V be a real vector space of dimension 2014 and $T : V \to V$ be the linear transformation defined by

$T(v_1) = v_2, T(v_2) = v_3, \ldots, T(v_{2013}) = v_{2014}, T(v_{2014}) = v_1$

for a basis $\{v_1, v_2, \ldots, v_{2014}\}$ of V. Find all the real eigenvalues and eigenvectors of T.

(7) We call a linear transformation $T : V \to V$ a projection if there are subspaces W_1 and W_2 of V such that $V = W_1 + W_2$, $T(w_1) = 0$ for all $w_1 \in W_1$ and $T(w_2) = w_2$ for all $w_2 \in W$. Show that T is a projection if and only if $T^2 = T$.

(8) Let $T : V \to V$ be a projection, as defined in the previous problem. Show that T has no eigenvalues other than 0 and 1.