Math 225 Assignment #3
Due Jan 31, 2014

(1) Let
\[A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & 3 \\ 4 & 3 & 1 & 5 \end{bmatrix}. \]
Find a basis and the dimension of a) \text{Nul}(A) b) \text{Row}(A) c) \text{Col}(A)

(2) Let \(M_{3 \times 3}(\mathbb{R}) \) be the vector space of \(3 \times 3 \) real matrices. Find a basis and the dimension of
(a) the subspace of \(M_{3 \times 3}(\mathbb{R}) \) consisting of \(A \) satisfying
\[A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]
(b) the subspace of \(M_{3 \times 3}(\mathbb{R}) \) consisting of \(A \) satisfying
\[\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} A = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \]

(3) Let \(\mathbb{R}[x] \) be the vector space of all real polynomials in \(x \). Find a basis and the dimension of
(a) the subspace of \(\mathbb{R}[x] \) consisting of \(f(x) \) satisfying \(\deg f \leq 3 \) and \(f(0) + f(1) = 0 \);
(b) the subspace of \(\mathbb{R}[x] \) consisting of \(f(x) \) satisfying \(\deg f \leq n \) and \(f'''(2) = 0 \) for some \(n \geq 3 \);
(c) the subspace of \(\mathbb{R}[x] \) consisting of \(f(x) \) satisfying \(\deg f \leq n \) and \(f(0) = f(1) = f(2) \) for some \(n \geq 3 \).

(4) Which of the following statements are true and which are false? Justify your answer.
(a) If \(\{ \mathbf{u}, \mathbf{v}, \mathbf{w} \} \) is a basis of \(V \), so is \(\{ \mathbf{u} + \mathbf{v}, \mathbf{v} + \mathbf{w}, \mathbf{w} + \mathbf{u} \} \).
(b) If \(\{ \mathbf{u}, \mathbf{v}, \mathbf{w} \} \) is a basis of \(V \), so is \(\{ \mathbf{u} - \mathbf{v}, \mathbf{v} - \mathbf{w}, \mathbf{w} - \mathbf{u} \} \).
(c) If \(A \) is a nonsingular \(2 \times 2 \) real matrix, then \(I, A, A^{-1} \) are linearly dependent in \(M_{2 \times 2}(\mathbb{R}) \).
(d) If \(A \) is an \(n \times n \) matrix such that \(\text{Row}(A) = \text{Row}(A^2) \), then \(\text{Row}(A^{2013}) = \text{Row}(A^{2014}) \).

(5) Let \(A \) be an \(n \times n \) matrix. Show that if \(\text{Nul}(A) = \text{Nul}(A^2) \), then \(\text{Nul}(A^i) = \text{Nul}(A^j) \) for all \(i, j \geq 1 \).

(6) Which of the following maps are linear transformations and which are not? Justify your answer.
(a) $T : \mathbb{R}^2 \to \mathbb{R}^3$ given by $T(x, y) = (x, y, x + y)$;
(b) $T : M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$ given by $T(A) = A A^T$;
(c) $T : \mathbb{R}[x] \to \mathbb{R}^2$ given by $T(f(x)) = (f(1), f'(2))$;
(d) $T : \mathbb{R}[x] \to \mathbb{R}[x]$ given by $T(f(x)) = x f'(x) + f(x + 1)$.

(7) Let $\mathbb{R}^{m \times n}$ be the vector space of $m \times n$ real matrices. Let $T : \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ be the map given by
\[T(A) = P A Q \]
for some $m \times m$ matrix P and $n \times n$ matrix Q. Show that T is a linear transformation.

(8) Let $\mathbb{R}^{2 \times 2}$ be the vector space of 2×2 real matrices and let $T : \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ be the map given by
\[T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a + d & b + c \\ b - c & a - d \end{bmatrix}. \]
(a) Show that T is a linear transformation.
(b) Fixing a basis $B = \{ E_{11}, E_{12}, E_{21}, E_{22} \}$ of $\mathbb{R}^{2 \times 2}$ where
\[E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \ E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \]
find the matrix $[T]_{B,B}$ representing T under B.
(c) Do there exist 2×2 matrices P and Q such that $T(A) = P A Q$ for all $A \in \mathbb{R}^{2 \times 2}$? Justify your answer.