Solutions for Math 225 Assignment #1

(1) Solve the following linear equations using echelon form:

\begin{align*}
a) & \begin{cases}
 x_1 - x_2 + x_3 + x_4 = 0 \\
 2x_1 - 3x_2 + x_3 = 0 \\
 2x_2 + x_3 + x_4 = 0
\end{cases} \\
b) & \begin{cases}
 x_1 - x_2 + x_3 = 1 \\
 2x_1 - 3x_2 + x_3 = 2 \\
 4x_1 - 5x_2 + 3x_3 = 4
\end{cases}
\end{align*}

Answer. a) $(3t, t, -3t, t)$ b) $(1 - 2t, -t, t)$ \hfill \Box

(2) Find the inverses of the following matrices if they exist:

\begin{align*}
a) & \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \\
b) & \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \\
c) & \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}
\end{align*}

Answer. a) $\begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$ \\
b) $\begin{bmatrix} -1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \end{bmatrix}$ \\
c) $\begin{bmatrix} -2/3 & 1/3 & 1/3 & 1/3 \\ 1/3 & -2/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & -2/3 & 1/3 \\ 1/3 & 1/3 & 1/3 & -2/3 \end{bmatrix}$ \hfill \Box

(3) Which of the following statements are true and which are false? Justify your answer.

(a) If $A^2 = A$, then $(I - A)^2 = I - A$, where A is a square matrix.

Proof. True since
\begin{align*}
(I - A)^2 &= I^2 - IA - AI + A^2 \\
&= I - 2A + A^2 = I - 2A + A = I - A.
\end{align*}

\hfill \Box

\footnote{http://www.math.ualberta.ca/~xichen/math22514w/hw1sol.pdf}
(b) Every 5×5 skew symmetric matrix is singular.

Proof. True. Let A be a 5×5 skew symmetric matrix. Then $A^T = -A$ and hence $\det(A^T) = \det(-A)$. And since $\det(A^T) = \det(A)$ and $\det(-A) = (-1)^5 \det(A)$, we obtain $\det(A) = -\det(A)$ and $\det(A) = 0$. So A must be singular. □

(c) $(A + B)(A - B) = A^2 - B^2$ for all square matrices A and B of the same size.

Solution. False. We have $(A + B)(A - B) = A^2 - AB + BA - B^2$. So $(A + B)(A - B) = A^2 - B^2$ if and only if $AB = BA$. But $AB \neq BA$ in general, e.g.,

$$
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix}
\neq
\begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}.
$$

□

(d) If $A^2 = I$, then $I - 2A$ is invertible, where A is a square matrix.

Proof. True since

$$
4(A^2 - I) = -(I + 2A)(I - 2A) - 3I
$$

$$
\Rightarrow -\frac{1}{3}(I + 2A)(I - 2A) = I
$$

it follows that $I - 2A$ is invertible and

$$(I - 2A)^{-1} = -\frac{1}{3}(I + 2A).$$

□

(4) For which real values of λ do the following vectors

$v_1 = (\lambda, 1, 1), \ v_2 = (1, \lambda, 1), \ v_3 = (1, 1, \lambda)$

form a linearly dependent set in \mathbb{R}^3?

Solution. v_1, v_2, v_3 are linearly dependent if and only if the matrix

$$
\begin{pmatrix}
\lambda & 1 & 1 \\
1 & \lambda & 1 \\
1 & 1 & \lambda
\end{pmatrix}
$$

is singular. □
is singular, i.e., when
\[\det \begin{bmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{bmatrix} = \lambda^3 - 3\lambda + 2 = (\lambda + 2)(\lambda - 1)^2 = 0. \]

In conclusion, they are linearly dependent when \(\lambda = -2 \) or \(\lambda = 1 \). □

(5) Show that an \(n \times n \) matrix \(A \) is singular if and only if there exists a nonzero \(n \times n \) matrix \(B \) such that \(AB = 0 \).

Proof. Suppose that \(AB = 0 \) for some \(B \neq 0 \). Then \(A \) must be singular; otherwise, \(A \) is invertible and \(B = A^{-1}(AB) = 0 \), which is a contradiction.

Suppose that \(A \) is singular. Then there exists a nonzero column vector \(\mathbf{x} \) such that \(A\mathbf{x} = 0 \). Let
\[B = \begin{bmatrix} \mathbf{x} & \mathbf{x} & \ldots & \mathbf{x} \\ \hline n \end{bmatrix}. \]

Then \(AB = 0 \). □

(6) Which of the following sets are vector spaces over \(\mathbb{R} \)? Justify your answer. Here vector addition and scalar multiplication are defined in the usual way unless stated otherwise.

(a) the set of odd functions \(f : \mathbb{R} \to \mathbb{R} \);

Proof. Yes. Let \(F(\mathbb{R}) \) be the vector space of all functions \(f : \mathbb{R} \to \mathbb{R} \). It suffices to show that \(O = \{ f \in F(\mathbb{R}) : f(-x) \equiv -f(x) \} \) is a subspace of \(F(\mathbb{R}) \).

Obviously, \(0 \in O \). For \(f(x), g(x) \in O \), \(f(-x) = -f(x) \) and \(g(-x) = -g(x) \) for all \(x \). Therefore, \(f(-x) + cg(-x) = -(f(x) + cg(x)) \) for all \(x \) and \(c \in \mathbb{R} \) and hence \(f(x) + cg(x) \in O \). It follows that \(O \) is a subspace of \(F(\mathbb{R}) \) and hence a vector space. □

(b) the set of even functions \(f : \mathbb{R} \to \mathbb{R} \);

Proof. Yes. Let \(F(\mathbb{R}) \) be the vector space of all functions \(f : \mathbb{R} \to \mathbb{R} \). It suffices to show that \(E = \{ f \in F(\mathbb{R}) : f(-x) \equiv f(x) \} \) is a subspace of \(F(\mathbb{R}) \).

Obviously, \(0 \in E \). For \(f(x), g(x) \in E \), \(f(-x) = f(x) \) and \(g(-x) = g(x) \) for all \(x \). Therefore, \(f(-x) + cg(-x) = f(x) + cg(x) \) for all \(x \) and \(c \in \mathbb{R} \) and hence \(f(x) + cg(x) \in E \).
It follows that E is a subspace of $F(\mathbb{R})$ and hence a vector space.

c) \mathbb{R}^2 with vector addition \oplus defined by

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, 2(y_1 + y_2)).$$

Solution. This is not a vector space since law of associativity fails and also there is no zero vector. Suppose that there exists o such that

$$u \oplus o = u$$

for all u. Let $o = (x_0, y_0)$. Then

$$(x, y) \oplus (x_0, y_0) = (x + x_0, 2(y + y_0)) = (x, y)$$

for all (x, y). So $2y_0 = -y$ for all y, which is impossible. □

(7) Let $\mathbb{R}[x]$ be the vector space of all real polynomials in x. Determine whether the following sets are subspaces of $\mathbb{R}[x]$. Justify your answer.

(a) All polynomials $f(x)$ of degree ≤ 3.

Proof. Yes, $W = \{ f(x) \in \mathbb{R}[x] : \deg f \leq 3 \}$ is a subspace of $\mathbb{R}[x]$. First, $0 \in W$ since $\deg 0 = -1$. Second, for all $f(x), g(x) \in W$, $\deg f \leq 3$ and $\deg g \leq 3$ and hence $\deg(f + cg) \leq 3$ for all $c \in \mathbb{R}$. Therefore, $f(x) + cg(x) \in W$ for all $f(x), g(x) \in W$ and $c \in \mathbb{R}$. So W is a subspace. □

(b) All polynomials $f(x)$ satisfying $f(1) = f(2)$.

Proof. Yes, $W = \{ f(x) \in \mathbb{R}[x] : f(1) = f(2) \}$ is a subspace of $\mathbb{R}[x]$. First, $h(x) \equiv 0 \in W$ since $h(1) = h(2) = 0$. Second, for all $f(x), g(x) \in W$, $f(1) = f(2)$ and $g(1) = g(2)$ and hence $f(1) + cg(1) = f(2) + cg(2)$ for all $c \in \mathbb{R}$. Therefore, $f(x) + cg(x) \in W$ for all $f(x), g(x) \in W$ and $c \in \mathbb{R}$. So W is a subspace. □

(c) All polynomials $f(x)$ satisfying $f(1) = 2$.

Proof. This is not a subspace of $\mathbb{R}[x]$ since it does not contain 0. □

(d) All polynomials $f(x)$ satisfying $f''(1) = 0$.

Proof. Yes, \(W = \{ f(x) \in \mathbb{R}[x] : f''(1) = 0 \} \) is a subspace of \(\mathbb{R}[x] \). First, \(h(x) \equiv 0 \in W \) since \(h''(x) \equiv 0 \). Second, for all \(f(x), g(x) \in W \), \(f''(1) = g''(1) = 0 \) and hence \((f + cg)''(1) = f''(1) + cg''(1) = 0\) for all \(c \in \mathbb{R} \). Therefore, \(f(x) + cg(x) \in W \) for all \(f(x), g(x) \in W \) and \(c \in \mathbb{R} \). So \(W \) is a subspace. \(\square \)

(8) Find the intersection \(V_1 \cap V_2 \) and the sum \(V_1 + V_2 \) of the subspaces \(V_1 \) and \(V_2 \) of \(\mathbb{R}^4 \) for
(a) \(V_1 = \{ x_1 + x_2 = 0 \} \) and \(V_2 = \{ x_3 + x_4 = 0 \} \);

Solution. The intersection is
\[
V_1 \cap V_2 = \{ x_1 + x_2 = x_3 + x_4 = 0 \}
= \left\{ \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = 0 \right\}
= \operatorname{Nul} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}.
\]

For \(V_1 + V_2 \), since
\[
(V_1 + V_2)^\perp = V_1^\perp \cap V_2^\perp = \operatorname{Span}\{ (1, 1, 0, 0) \} \cap \operatorname{Span}\{ (0, 0, 1, 1) \}
= \{ \mathbf{x} : \mathbf{x} = (t_1, t_1, 0, 0) = (0, t_2, t_2) \}
= \{ (0, 0, 0, 0) \}
\]
it follows that
\[
V_1 + V_2 = \{ (0, 0, 0, 0) \}^\perp = \mathbb{R}^4.
\]
\(\square \)

(b) \(V_1 = \{ (t, t, -t, 0) \} \) and \(V_2 = \{ x_1 + x_2 = x_3 + x_4 = 0 \} \).

Solution. The intersection is
\[
V_1 \cap V_2 = \{ \mathbf{v} : \mathbf{v} \in V_1, \in V_2 \}
= \{ (t, t, -t, 0) : (t, t, -t, 0) \in V_2 \}
= \{ (t, t, -t, 0) : t + t = -t + 0 = 0 \} = \{ (0, 0, 0, 0) \}.
\]
We compute \(V_1 + V_2 \) through \((V_1 + V_2)^\perp = V_1^\perp \cap V_2^\perp\):
\[
V_1^\perp = \left(\begin{bmatrix} 1 & 1 & -1 & 0 \end{bmatrix} \right)^\perp
= \mathbf{v}^\perp.
\]
and
\[V_2^\perp = \left(\text{Nul} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \right)^\perp \]
\[= \text{Row} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \text{Span}\{v_1, v_2\} \]

where \(v = (1, 1, -1, 0) \), \(v_1 = (1, 1, 0, 0) \) and \(v_2 = (0, 0, 1, 1) \).

Therefore,
\[V_1^\perp \cap V_2^\perp = \{ a_1v_1 + a_2v_2 : \langle v, a_1v_1 + a_2v_2 \rangle = 0 \} \]
\[= \{ a_1v_1 + a_2v_2 : 2a_1 - a_2 = 0 \} = \{ a_1(v_1 + 2v_2) \} \]
\[= \text{Span}\{(1, 1, 2, 2)\} \]

and
\[V_1 + V_2 = (1, 1, 2, 2)^\perp = \{ x_1 + x_2 + 2x_3 + 2x_4 = 0 \}. \]