(1) No books, notes or calculators are allowed.
(2) Show your work in details.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
<th>Problem</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (60)</td>
<td></td>
<td>2 (20)</td>
<td></td>
</tr>
<tr>
<td>3 (20)</td>
<td></td>
<td>4 (20)</td>
<td></td>
</tr>
<tr>
<td>5 (35)</td>
<td></td>
<td>6 (25)</td>
<td></td>
</tr>
<tr>
<td>7 (20)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (200)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(1) (60 pts) Which of the following statements are true and which are false? Justify your answer.

(a) (10 pts) A matrix A is orthogonal if and only if A^T is.

(b) (10 pts) Let $T : V \to W$ be a linear transformation between two vectors space V and W. If v_1, v_2, \ldots, v_n are linearly independent, then $T(v_1), T(v_2), \ldots, T(v_n)$ are linearly independent.
(c) (10 pts) Let $T_1 : \mathbb{R}^6 \to \mathbb{R}^5$ and $T_2 : \mathbb{R}^5 \to \mathbb{R}^6$ be two linear transformations. Then $T_2 \circ T_1$ cannot be onto.

(d) (10 pts) Two square matrices with the same characteristic polynomial must be similar.
(e) (10 pts) A symmetric matrix with characteristic polynomial
\((x - 1)^n\) must be the \(n \times n\) identity matrix.

(f) (10 pts) For all linear transformations \(T : V \to V\),
\[K(T^2) \subset K(T).\]
(2) (20 pts) For each of the following quadratic forms, write it in the form of $\mathbf{x}^T A \mathbf{x}$ for a symmetric matrix A:

(a) (10 pts) $x_1^2 + 2x_1x_2 + x_2x_3 + x_3^2 + 4x_3x_1$

(b) (10 pts) $x_1^2 + 2x_2^2 - 3x_3^2 - 4x_4^2 - x_1x_4 + 2x_2x_3$
(3) (20 pts) Let A be a 3×3 matrix whose characteristic polynomial is $x^3 - x$.

(a) (5 pts) Show that A is singular.

(b) (15 pts) Find the characteristic polynomial and eigenvalues of $A + A^2$.
(4) (20 pts) Let \(\{a_n : n = 0, 1, 2, \ldots\} \) be a sequence of numbers given by

\[
a_n = 2a_{n-1} - 1
\]

for \(n \geq 1 \) and \(a_0 = 2 \). Find a formula for \(a_n \).
(5) (35 pts) Let $M_{m \times n}(\mathbb{R})$ be the vector space of $m \times n$ real matrices and $T : M_{2 \times 2}(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R})$ be the map given by

$$T(A) = A - A^T$$

(a) (5 pts) Show that T is a linear transformation.
(b) (10 pts) Find the kernel, range and the rank of T. Is T 1-1? Is T onto? Justify your answer.
(c) (10 pts) Find the characteristic polynomial, eigenvalues and eigenvectors of T and find a basis B of $M_{2\times 2}(\mathbb{R})$ such that $[T]_{B,B}$ is diagonal if such B exists.
(d) (10 pts) Find

\[T^{2014} \begin{bmatrix} 1 & -1 \\ 3 & -1 \end{bmatrix}. \]
(6) (25 pts) Let W_1 and W_2 be two subspaces of \mathbb{R}^4 given by

$W_1 = \{(x_1, x_2, x_3, x_4) : x_1 + x_2 + x_3 = x_2 + x_3 - x_4 = 0\}$

and

$W_2 = \{(t, 0, t, 0) : t \in \mathbb{R}\}$.

(a) (15 pts) Find the projection of $v = (1, 1, 1, 0)$ onto $W_1 + W_2$.
(b) (10 pts) Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation

$$T(u) = \text{proj}_{W_1 + W_2} u.$$

Find the kernel, range and rank of T.
(7) (20 pts) Let V be a vector space of finite dimension and let $T : V \to V$ be a linear transformation satisfying

$$T^2 - 5T + 6I = 0.$$

Show that T is diagonalizable.