Matrix Representation of Linear Transformation under Change of Basis

Characteristic Polynomial, Eigenvalues and Eigenvectors of a Linear Endomorphism

Linear Algebra II Lecture 20

Xi Chen

1University of Alberta

March 7, 2014
Outline

1. Matrix Representation of Linear Transformation under Change of Basis

2. Characteristic Polynomial, Eigenvalues and Eigenvectors of a Linear Endomorphism
Let $T : V \rightarrow W$ be a linear transformation. Fixing ordered bases B of V and C of W, T is represented by a matrix $[T]_{B,C}$ such that

$$[T(v)]_C = [T]_{B,C}[v]_B$$

for all $v \in V$.

Question. Let B' be another ordered basis of V and C' be another ordered basis of W. What is the relation between $[T]_{B,C}$ and $[T]_{B',C'}$?
Matrix Representation

Since

\[
\begin{align*}
[T(v)]_C &= [T]_{B,C} [v]_B \\
[T(v)]_{C'} &= P_{C \rightarrow C'} [T(v)]_C \\
[T(v)]_{C'} &= [T]_{B',C'} [v]_{B'} \\
[v]_{B'} &= P_{B \rightarrow B'} [v]_B
\end{align*}
\]

we conclude

\[
P_{C \rightarrow C'} [T]_{B,C} [v]_B = [T]_{B',C'} P_{B \rightarrow B'} [v]_B \quad \text{for all } v \in V
\]
For every $m \times n$ matrix A, there are invertible matrices P and Q such that

$$PAQ = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}$$

where I_k is the $k \times k$ identity matrix and $k = \text{rank}(A)$. For every linear transformation $T : V \to W$, there are bases B' of V and C' of W such that

$$[T]_{B',C'} = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}$$

where $k = \text{rank}(T)$. It suffices to let $[T]_{B,C} = A$, $P_{C \to C'} = P$ and $P_{B' \to B} = Q$.

Xi Chen
Linear Algebra II Lecture 20
Let k be the rank of $T : V \to W$. Then
\[
\dim K(T) = \dim V - \text{rank}(T) = n - k
\]
assuming $\dim V = n$ and $\dim W = m$.

We choose a basis
\[
B' = \{v_1, v_2, \ldots, v_k, v_{k+1}, \ldots, v_n\}
\]
of V such that $\{v_{k+1}, v_{k+2}, \ldots, v_n\}$ is a basis of $K(T)$ and choose a basis
\[
C' = \left\{ \begin{array}{c}
T(v_1) \\
T(v_2) \\
\vdots \\
T(v_k) \\
w_{k+1} \\
\vdots \\
w_m
\end{array} \right\}
\]
of W (so that w_1, w_2, \ldots, w_k is a basis of $R(T)$).
Since

\[T(v_1) = w_1 \]
\[T(v_2) = 0w_1 + w_2 \]
\[\vdots = \cdots \]
\[T(v_k) = 0w_1 + 0w_2 + \ldots + 0w_{k-1} + w_k \]
\[T(v_{k+1}) = 0 \]
\[\vdots = \vdots \]
\[T(v_n) = 0 \]

we obtain

\[[T]_{B',C'} = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}_{m \times n} \]
Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by

$$T(x, y, z) = (x + y, y + z).$$

The kernel of T is $K(T) = \text{Span}\{(1, -1, 1)\}$. We choose $B = \{(1, 0, 0), (0, 1, 0), (1, -1, 1)\}$ and $C = \{T(1, 0, 0), T(0, 1, 0)\} = \{(1, 0), (1, 1)\}$. Then

$$[T]_{B,C} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$
Linear Endomorphism

We call a linear transformation \(T : V \rightarrow V \) from a vector space \(V \) to itself a \textit{linear endomorphism} or simply \textit{endomorphism}.

Given two ordered bases \(B \) and \(B' \) of \(V \), \([T]_{B,B}\) and \([T]_{B',B'}\) satisfy

\[
[T]_{B',B'} = P_{B \rightarrow B'} [T]_{B,B} P_{B \rightarrow B'}^{-1} = P [T]_{B,B} P^{-1}.
\]

Therefore, \([T]_{B,B}\) and \([T]_{B',B'}\) are similar to each other.

For example, let \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be given by

\(T(x, y) = (x + y, x - y) \), \(B = \{ e_1, e_2 \} \) and \(B' = \{ (1, 2), (2, 3) \} \).

Then

\[
\begin{bmatrix}
-11 & -17 \\
7 & 11
\end{bmatrix} = \begin{bmatrix}
-3 & 2 \\
2 & -1
\end{bmatrix} \begin{bmatrix}
1 & 1 \\
1 & -1
\end{bmatrix} \begin{bmatrix}
1 & 2 \\
2 & 3
\end{bmatrix}
\]
Characteristic Polynomial, Eigenvalue and Eigenvector

Let $T : V \rightarrow V$ be a linear endomorphism. We call λ an \textit{eigenvalue} of T and $v \neq 0$ an \textit{eigenvector} of T corresponding to λ if $T(v) = \lambda v$.

If $\dim V = n < \infty$, the eigenvalues and eigenvectors of T are the same as those of $[T]_{B,B}$ for all ordered bases B of V.

We call

$$\det(x I - [T]_{B,B}) = x^n + a_1 x^{n-1} + \ldots + a_n$$

the \textit{characteristic polynomial} of T, which is independent of the choice of B. Note that $a_n = \det(-[T]_{B,B}) = (-1)^n \det([T]_{B,B})$ and $a_1 = -\text{Tr}([T]_{B,B})$ is the trace of $[T]_{B,B}$.