Change of Basis
Matrix Representation of Linear Transformation under Change of Basis

Linear Algebra II Lecture 19

Xi Chen

University of Alberta

March 5, 2014
Outline

1. Change of Basis

2. Matrix Representation of Linear Transformation under Change of Basis
Let $B = \{v_1, v_2, \ldots, v_n\}$ and $C = \{w_1, w_2, \ldots, w_n\}$ be two ordered bases of V. The \textit{change-of-coordinates} matrices $P_{B \rightarrow C}$ and $P_{C \rightarrow B}$ are the matrices such that

$$[v]_C = P_{B \rightarrow C}[v]_B \text{ and } [v]_B = P_{C \rightarrow B}[v]_C$$

for all $v \in V$.

More specifically,

$$P_{B \rightarrow C} = \begin{bmatrix} [v_1]_C & [v_2]_C & \cdots & [v_n]_C \end{bmatrix}$$

$$P_{C \rightarrow B} = \begin{bmatrix} [w_1]_B & [w_2]_B & \cdots & [w_n]_B \end{bmatrix}$$
Basic Properties of $P_{B \to C}$

- $P_{B \to C}$ is invertible and

 \[P_{B \to C} = (P_{C \to B})^{-1} \]

- Let B, C and D be three bases of V. Then

 \[P_{B \to D} = P_{C \to D} P_{B \to C} \]

 since

 \[[v]_D = P_{C \to D} [v]_C = P_{C \to D} (P_{B \to C} [v]_B) = (P_{C \to D} P_{B \to C}) [v]_B. \]
Rotate xy-coordinates counter clockwise by an angle θ. What are the new coordinates (x', y') of a point $P = (x, y)$?
Two-dimensional Rotation

Let $B = \{e_1, e_2\}$ be the standard basis. Rotating B counter clockwise by θ, we obtain

$$B' = \{v_1, v_2\} = \{(\cos \theta, \sin \theta), (-\sin \theta, \cos \theta)\}.$$

The change-of-coordinates matrices between B and B' are

$$P_{B' \rightarrow B} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad \text{and} \quad P_{B \rightarrow B'} = P_{B' \rightarrow B}^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}.$$

Note that $P_{B \rightarrow B'} = P_{B' \rightarrow B}^T$. Recall that such matrices are called orthogonal.
Two-dimensional Rotation

For a point \(\mathbf{v} = (x, y) \) under \(B \),

\[
[\mathbf{v}]_{B'} = \begin{bmatrix} x' \\ y' \end{bmatrix} = P_{B \rightarrow B'}[\mathbf{v}]_B = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\]

\[
= \begin{bmatrix} x \cos \theta + y \sin \theta \\ -x \sin \theta + y \cos \theta \end{bmatrix}.
\]

Coordinate change formula of a two-dimensional rotation:

\[
\begin{cases}
 x' = x \cos \theta + y \sin \theta \\
y' = -x \sin \theta + y \cos \theta
\end{cases}
\]

For example, rotating \(xy \)-coordinates by \(\pi/3 \), \(P = (1, 1) \) has new coordinates

\[
(x', y') = \left(\cos \frac{\pi}{3} + \sin \frac{\pi}{3}, -\sin \frac{\pi}{3} + \cos \frac{\pi}{3} \right) = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}, -\frac{\sqrt{3}}{2} + \frac{1}{2} \right).
\]
Let $T : V \rightarrow W$ be a linear transformation. Fixing ordered bases B of V and C of W, T is represented by a matrix $[T]_{B,C}$ such that

$$[T(v)]_C = [T]_{B,C}[v]_B$$

for all $v \in V$.

Question. Let B' be another ordered basis of V and C' be another ordered basis of W. What is the relation between $[T]_{B,C}$ and $[T]_{B',C'}$?
Matrix Representation

Since

\[
\begin{cases}
[T(\mathbf{v})]_C = [T]_{B,C}[\mathbf{v}]_B \\
[T(\mathbf{v})]_{C'} = P_{C \rightarrow C'} [T(\mathbf{v})]_C \\
[T(\mathbf{v})]_{C'} = [T]_{B', C'} [\mathbf{v}]_{B'} \\
[\mathbf{v}]_{B'} = P_{B \rightarrow B'} [\mathbf{v}]_B
\end{cases}
\]

we conclude

\[
P_{C \rightarrow C'} [T]_{B,C}[\mathbf{v}]_B = [T]_{B', C'} P_{B \rightarrow B'} [\mathbf{v}]_B \text{ for all } \mathbf{v} \in V
\]