Linear Algebra II Lecture 17

Xi Chen

1University of Alberta

February 14, 2014
1. Consequences of Rank Theorem
Let $T : V \to W$ be a linear transformation between two vector spaces of dimensions $\dim V = n$ and $\dim W = m$ and let $A = [T]$ be the matrix representing T. Then

\[T \text{ 1-1 } \iff K(T) = \{0\} \iff \text{Nul}(A) = \{0\}. \]

\[T \text{ onto } \iff R(T) = W \iff \text{rank}(T) = \dim W \iff \text{rank}(A) = m. \]

\[T \text{ bijective } \iff T \text{ 1-1 and onto } \iff K(T) = \{0\}, \text{rank}(T) = m \]

\[A \text{ invertible } \iff \text{Nul}(A) = \{0\}, \text{rank}(A) = m. \]
Let $T : V \to W$ be a linear transformation between two vector spaces of dimensions $\dim V = n$ and $\dim W = m$ and let $A = [T]$ be the matrix representing T. Then

\[T \text{ 1-1 } \iff K(T) = \{0\} \iff \text{Nul}(A) = \{0\}. \]

\[T \text{ onto } \iff R(T) = W \iff \text{rank}(T) = \dim W \iff \text{rank}(A) = m \]

\[T \text{ bijective } \iff T \text{ 1-1 and onto } \iff K(T) = \{0\}, \text{rank}(T) = m \]

\[A \text{ invertible } \iff \text{Nul}(A) = \{0\}, \text{rank}(A) = m \]
Let $T : V \rightarrow W$ be a linear transformation between two vector spaces of dimensions $\dim V = n$ and $\dim W = m$ and let $A = [T]$ be the matrix representing T. Then

\begin{align*}
T \text{ 1-1} & \iff K(T) = \{0\} \iff \text{Nul}(A) = \{0\}. \\
T \text{ onto} & \iff R(T) = W \iff \text{rank}(T) = \dim W \iff \text{rank}(A) = m
\end{align*}

T bijective $\iff T$ 1-1 and onto $\iff K(T) = \{0\}$, $\text{rank}(T) = m$

A invertible \iff Nul$(A) = \{0\}$, $\text{rank}(A) = m$
Let $T : V \to W$ be a linear transformation between two vector spaces of dimensions $\dim V = n$ and $\dim W = m$ and let $A = [T]$ be the matrix representing T. Then

\[T \text{ 1-1 } \iff K(T) = \{0\} \iff \text{Nul}(A) = \{0\}. \]

\[T \text{ onto } \iff R(T) = W \iff \text{rank}(T) = \dim W \iff \text{rank}(A) = m \]

T bijective $\iff T$ 1-1 and onto $\iff K(T) = \{0\}$, $\text{rank}(T) = m$

A invertible $\iff \text{Nul}(A) = \{0\}$, $\text{rank}(A) = m$
Corollary

Let A be an $m \times n$ matrix. Then

- $\text{rank}(A) + \text{dim Nul}(A) = n$.
- The solution set of $Ax = 0$ is a subspace of \mathbb{R}^n of dimension $n - \text{rank}(A)$. In particular, if $m < n$, $Ax = 0$ has infinitely many solutions.
- $Ax = b$ has a solution if and only if $b \in \text{Col}(A)$, or equivalently, $\text{rank}(A) = \text{rank} \begin{bmatrix} A & b \end{bmatrix}$. If x_0 is a solution of $Ax = b$, then
 \[
 \{ x : Ax = b \} = x_0 + \text{Nul}(A) = \{ x_0 + v : v \in \text{Nul}(A) \}.
 \]
 In particular, if $m < n$, $Ax = b$ has either no solutions or infinitely many solutions.
Corollary

Let A be an $m \times n$ matrix. Then

- $\text{rank}(A) + \text{dim Nul}(A) = n$.

- The solution set of $Ax = 0$ is a subspace of \mathbb{R}^n of dimension $n - \text{rank}(A)$. In particular, if $m < n$, $Ax = 0$ has infinitely many solutions.

- $Ax = b$ has a solution if and only if $b \in \text{Col}(A)$, or equivalently, $\text{rank}(A) = \text{rank} \begin{bmatrix} A & b \end{bmatrix}$. If x_0 is a solution of $Ax = b$, then

$$\{x : Ax = b\} = x_0 + \text{Nul}(A) = \{x_0 + v : v \in \text{Nul}(A)\}.$$

In particular, if $m < n$, $Ax = b$ has either no solutions or infinitely many solutions.
Consequences of Rank Theorem

Corollary

Let A be an $m \times n$ matrix. Then

- $\text{rank}(A) + \dim \text{Nul}(A) = n$.

- The solution set of $Ax = 0$ is a subspace of \mathbb{R}^n of dimension $n - \text{rank}(A)$. In particular, if $m < n$, $Ax = 0$ has infinitely many solutions.

- $Ax = b$ has a solution if and only if $b \in \text{Col}(A)$, or equivalently, $\text{rank}(A) = \text{rank} [A \ b]$. If x_0 is a solution of $Ax = b$, then

$$\{x : Ax = b\} = x_0 + \text{Nul}(A) = \{x_0 + v : v \in \text{Nul}(A)\}.$$

In particular, if $m < n$, $Ax = b$ has either no solutions or infinitely many solutions.
Corollary

Let A be an $m \times n$ matrix. Then

- $\text{rank}(A) + \dim \text{Nul}(A) = n$.
- The solution set of $Ax = 0$ is a subspace of \mathbb{R}^n of dimension $n - \text{rank}(A)$. In particular, if $m < n$, $Ax = 0$ has infinitely many solutions.
- $Ax = b$ has a solution if and only if $b \in \text{Col}(A)$, or equivalently, $\text{rank}(A) = \text{rank} \ [A \ b]$. If x_0 is a solution of $Ax = b$, then

\[\{x : Ax = b\} = x_0 + \text{Nul}(A) = \{x_0 + v : v \in \text{Nul}(A)\}. \]

In particular, if $m < n$, $Ax = b$ has either no solutions or infinitely many solutions.
Corollary

Let A be an $m \times n$ matrix. Then

- $\text{rank}(A) + \text{dim Nul}(A) = n$.
- The solution set of $Ax = 0$ is a subspace of \mathbb{R}^n of dimension $n - \text{rank}(A)$. In particular, if $m < n$, $Ax = 0$ has infinitely many solutions.
- $Ax = b$ has a solution if and only if $b \in \text{Col}(A)$, or equivalently, $\text{rank}(A) = \text{rank } [A \ b]$. If x_0 is a solution of $Ax = b$, then

$$\{x : Ax = b\} = x_0 + \text{Nul}(A) = \{x_0 + v : v \in \text{Nul}(A)\}.$$

In particular, if $m < n$, $Ax = b$ has either no solutions or infinitely many solutions.
Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation given by $T(x) = Ax$. Then

$$[T] = A, \dim K(T) = \dim \text{Nul}(A),$$
$$\text{rank}(T) = \dim R(T) = \dim \text{Col}(A) = \text{rank}(A).$$

$Ax = b$ has a solution if and only if $T(x) = b$ for some x, i.e.,

$$b \in R(T) \iff b \in \text{Col}(A) \iff \text{Col}(A) = \text{Col} \begin{bmatrix} A & b \end{bmatrix} \iff \text{rank}(A) = \text{rank} \begin{bmatrix} A & b \end{bmatrix}. $$

Finally, if x_0 and x_1 are two solutions of $Ax = b$. Then

$$T(x_1 - x_0) = T(x_1) - T(x_0) = b - b = 0,$$
$$x_1 - x_0 \in K(T) = \text{Nul}(A) \Rightarrow x_1 \in x_0 + \text{Nul}(A).$$
Proof.

Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be the linear transformation given by $T(x) = Ax$. Then

$$[T] = A, \dim K(T) = \dim \text{Nul}(A),$$

$$\text{rank}(T) = \dim R(T) = \dim \text{Col}(A) = \text{rank}(A).$$

$Ax = b$ has a solution if and only if $T(x) = b$ for some x, i.e.,

$$b \in R(T) \iff b \in \text{Col}(A)$$

$$\iff \text{Col}(A) = \text{Col} \begin{bmatrix} A & b \end{bmatrix} \iff \text{rank}(A) = \text{rank} \begin{bmatrix} A & b \end{bmatrix}.$$

Finally, if x_0 and x_1 are two solutions of $Ax = b$. Then

$T(x_1 - x_0) = T(x_1) - T(x_0) = b - b = 0$, i.e.,

$$x_1 - x_0 \in K(T) = \text{Nul}(A) \Rightarrow x_1 \in x_0 + \text{Nul}(A).$$
Proof.

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation given by $T(x) = Ax$. Then

\[
[T] = A, \quad \text{dim } K(T) = \text{dim } \text{Nul}(A),
\]
\[
\text{rank}(T) = \dim R(T) = \dim \text{Col}(A) = \text{rank}(A).
\]

$Ax = b$ has a solution if and only if $T(x) = b$ for some x, i.e.,

\[
b \in R(T) \iff b \in \text{Col}(A)
\]
\[
\iff \text{Col}(A) = \text{Col} \begin{bmatrix} A & b \end{bmatrix} \iff \text{rank}(A) = \text{rank} \begin{bmatrix} A & b \end{bmatrix}.
\]

Finally, if x_0 and x_1 are two solutions of $Ax = b$. Then

\[
T(x_1 - x_0) = T(x_1) - T(x_0) = b - b = 0, \text{ i.e., }
\]
\[
x_1 - x_0 \in K(T) = \text{Nul}(A) \Rightarrow x_1 \in x_0 + \text{Nul}(A).
\]
Proof.
Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation given by $T(x) = Ax$. Then

\[
[T] = A, \quad \dim K(T) = \dim \text{Nul}(A),
\]
\[
\text{rank}(T) = \dim R(T) = \dim \text{Col}(A) = \text{rank}(A).
\]

$Ax = b$ has a solution if and only if $T(x) = b$ for some x, i.e.,

\[
b \in R(T) \iff b \in \text{Col}(A)
\]
\[
\iff \text{Col}(A) = \text{Col} [A \ b] \iff \text{rank}(A) = \text{rank} [A \ b].
\]

Finally, if x_0 and x_1 are two solutions of $Ax = b$. Then

\[
T(x_1 - x_0) = T(x_1) - T(x_0) = b - b = 0, \text{ i.e.,}
\]
\[
x_1 - x_0 \in K(T) = \text{Nul}(A) \quad \Rightarrow \quad x_1 \in x_0 + \text{Nul}(A).
\]
Corollary

Let A be an $n \times n$ matrix. Then the following are equivalent:

- A is nonsingular ($\det A \neq 0$).
- A is invertible (A has an inverse A^{-1} satisfying $AA^{-1} = A^{-1}A = I$).
- $\text{Nul}(A) = \{0\}$.
- $Ax = 0$ has only one solution.
- $\text{rank}(A) = n$.
- $Ax = b$ has a solution for all $b \in \mathbb{R}^n$.
Corollary

Let A be an $n \times n$ matrix. Then the following are equivalent:

- A is nonsingular ($\det A \neq 0$).
- A is invertible (A has an inverse A^{-1} satisfying $AA^{-1} = A^{-1}A = I$).
- $\text{Nul}(A) = \{0\}$.
- $Ax = 0$ has only one solution.
- $\text{rank}(A) = n$.
- $Ax = b$ has a solution for all $b \in \mathbb{R}^n$.
Corollary

Let A be an $n \times n$ matrix. Then the following are equivalent:

- A is nonsingular ($\det A \neq 0$).
- A is invertible (A has an inverse A^{-1} satisfying $AA^{-1} = A^{-1}A = I$).
- $\text{Nul}(A) = \{0\}$.
- $Ax = 0$ has only one solution.
- $\text{rank}(A) = n$.
- $Ax = b$ has a solution for all $b \in \mathbb{R}^n$.
Corollary

Let A be an $n \times n$ matrix. Then the following are equivalent:

- A is nonsingular ($\det A \neq 0$).
- A is invertible (A has an inverse A^{-1} satisfying $AA^{-1} = A^{-1}A = I$).
- $\text{Nul}(A) = \{0\}$.
- $Ax = 0$ has only one solution.
- $\text{rank}(A) = n$.
- $Ax = b$ has a solution for all $b \in \mathbb{R}^n$.
Corollary

Let A be an $n \times n$ matrix. Then the following are equivalent:

- A is nonsingular (det $A \neq 0$).
- A is invertible (A has an inverse A^{-1} satisfying $AA^{-1} = A^{-1}A = I$).
- $\text{Nul}(A) = \{0\}$.
- $Ax = 0$ has only one solution.
- $\text{rank}(A) = n$.
- $Ax = b$ has a solution for all $b \in \mathbb{R}^n$.
Corollary

Let A be an $n \times n$ matrix. Then the following are equivalent:

- A is nonsingular ($\det A \neq 0$).
- A is invertible (A has an inverse A^{-1} satisfying $AA^{-1} = A^{-1}A = I$).
- $\text{Nul}(A) = \{0\}$.
- $A\mathbf{x} = 0$ has only one solution.
- $\text{rank}(A) = n$.
- $A\mathbf{x} = \mathbf{b}$ has a solution for all $\mathbf{b} \in \mathbb{R}^n$.
Corollary

Let A be an $n \times n$ matrix. Then the following are equivalent:

- A is nonsingular ($\det A \neq 0$).
- A is invertible (A has an inverse A^{-1} satisfying $AA^{-1} = A^{-1}A = I$).
- $\text{Nul}(A) = \{0\}$.
- $Ax = 0$ has only one solution.
- $\text{rank}(A) = n$.
- $Ax = b$ has a solution for all $b \in \mathbb{R}^n$.
Proof.

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation given by
$T(x) = Ax$. Then $[T] = A$ and

\[
\text{det } A \neq 0 \iff A \text{ invertible } \iff T \text{ bijective}
\]

\[
\text{Nul}(A) = \{0\} \iff T \text{ injective}
\]

\[
\text{rank}(A) = n \iff T \text{ onto}
\]

where CR = Cramer’s Rule and RT = Rank Theorem.
Let $T : V \to W$ and $S : U \to V$ be two linear transformations between vector spaces U, V and W of finite dimensions. Then

- $\text{rank}(T \circ S) \leq \min(\text{rank}(T), \text{rank}(S))$.
- $\text{rank}(T \circ S) = \text{rank}(T)$ if S is onto.
- $\text{rank}(T \circ S) = \text{rank}(S)$ if T is 1-1.
- In summary, $\text{rank}(T \circ S) = \min(\text{rank}(T), \text{rank}(S))$ if either $\text{rank}(T) = \dim V$ or $\text{rank}(S) = \dim V$.

For example,

$$\text{rank}(T_1 \circ T_2 \circ \ldots \circ T_n) \leq \min(\text{rank}(T_1), \text{rank}(T_2), \ldots, \text{rank}(T_n))$$

and the equality holds if all of T_i, except one, are bijective.
Theorem

Let $T : V \rightarrow W$ and $S : U \rightarrow V$ be two linear transformations between vector spaces U, V and W of finite dimensions. Then

- $\text{rank}(T \circ S) \leq \min(\text{rank}(T), \text{rank}(S))$.
- $\text{rank}(T \circ S) = \text{rank}(T)$ if S is onto.
- $\text{rank}(T \circ S) = \text{rank}(S)$ if T is 1-1.
- In summary, $\text{rank}(T \circ S) = \min(\text{rank}(T), \text{rank}(S))$ if either $\text{rank}(T) = \dim V$ or $\text{rank}(S) = \dim V$.

For example,

$$\text{rank}(T_1 \circ T_2 \circ \ldots \circ T_n) \leq \min(\text{rank}(T_1), \text{rank}(T_2), \ldots, \text{rank}(T_n))$$

and the equality holds if all of T_i, except one, are bijective.
Theorem

Let $T : V \rightarrow W$ and $S : U \rightarrow V$ be two linear transformations between vector spaces U, V and W of finite dimensions. Then

- $\text{rank}(T \circ S) \leq \min(\text{rank}(T), \text{rank}(S))$.
- $\text{rank}(T \circ S) = \text{rank}(T)$ if S is onto.
- $\text{rank}(T \circ S) = \text{rank}(S)$ if T is 1-1.
- In summary, $\text{rank}(T \circ S) = \min(\text{rank}(T), \text{rank}(S))$ if either $\text{rank}(T) = \dim V$ or $\text{rank}(S) = \dim V$.

For example,

$$\text{rank}(T_1 \circ T_2 \circ \ldots \circ T_n) \leq \min(\text{rank}(T_1), \text{rank}(T_2), \ldots, \text{rank}(T_n))$$

and the equality holds if all of T_i, except one, are bijective.
Consequences of Rank Theorem

Ranks of Compositions of Linear Transformations

Theorem

Let $T : V \rightarrow W$ and $S : U \rightarrow V$ be two linear transformations between vector spaces U, V and W of finite dimensions. Then

- $\text{rank}(T \circ S) \leq \min(\text{rank}(T), \text{rank}(S))$.
- $\text{rank}(T \circ S) = \text{rank}(T)$ if S is onto.
- $\text{rank}(T \circ S) = \text{rank}(S)$ if T is 1-1.

In summary, $\text{rank}(T \circ S) = \min(\text{rank}(T), \text{rank}(S))$ if either $\text{rank}(T) = \dim V$ or $\text{rank}(S) = \dim V$.

For example,

$$\text{rank}(T_1 \circ T_2 \circ \ldots \circ T_n) \leq \min(\text{rank}(T_1), \text{rank}(T_2), \ldots, \text{rank}(T_n))$$

and the equality holds if all of T_i, except one, are bijective.
Theorem

Let $T : V \to W$ and $S : U \to V$ be two linear transformations between vector spaces U, V and W of finite dimensions. Then

- $\text{rank}(T \circ S) \leq \min(\text{rank}(T), \text{rank}(S))$.
- $\text{rank}(T \circ S) = \text{rank}(T)$ if S is onto.
- $\text{rank}(T \circ S) = \text{rank}(S)$ if T is 1-1.
- In summary, $\text{rank}(T \circ S) = \min(\text{rank}(T), \text{rank}(S))$ if either $\text{rank}(T) = \dim V$ or $\text{rank}(S) = \dim V$.

For example,

$$\text{rank}(T_1 \circ T_2 \circ \ldots \circ T_n) \leq \min(\text{rank}(T_1), \text{rank}(T_2), \ldots, \text{rank}(T_n))$$

and the equality holds if all of T_i, except one, are bijective.
Theorem
Let \(T : V \rightarrow W \) and \(S : U \rightarrow V \) be two linear transformations between vector spaces \(U, V \) and \(W \) of finite dimensions. Then

1. \(\text{rank}(T \circ S) \leq \min(\text{rank}(T), \text{rank}(S)) \).
2. \(\text{rank}(T \circ S) = \text{rank}(T) \) if \(S \) is onto.
3. \(\text{rank}(T \circ S) = \text{rank}(S) \) if \(T \) is 1-1.
4. In summary, \(\text{rank}(T \circ S) = \min(\text{rank}(T), \text{rank}(S)) \) if either \(\text{rank}(T) = \dim V \) or \(\text{rank}(S) = \dim V \).

For example,

\[
\text{rank}(T_1 \circ T_2 \circ \ldots \circ T_n) \leq \min(\text{rank}(T_1), \text{rank}(T_2), \ldots, \text{rank}(T_n))
\]

and the equality holds if all of \(T_i \), except one, are bijective.
Proof.

Note that

\[\text{rank}(T \circ S) \leq \min(\text{rank}(T), \text{rank}(S)) \iff \begin{cases}
\text{rank}(T \circ S) \leq \text{rank}(T) \\
\text{rank}(T \circ S) \leq \text{rank}(S)
\end{cases} \]

Since \(S(U) \subset V, T(S(U)) \subset T(V) \), i.e., \(R(T \circ S) \subset R(T) \). So

\[\text{rank}(T \circ S) \leq \text{rank}(T). \]

By Rank Theorem, \(\dim T(S(U)) \leq \dim S(U) \). Therefore,

\[\text{rank}(T \circ S) \leq \text{rank}(S). \]
Proof.

Note that

\[\text{rank}(T \circ S) \leq \min(\text{rank}(T), \text{rank}(S)) \iff \begin{cases} \text{rank}(T \circ S) \leq \text{rank}(T) \\ \text{rank}(T \circ S) \leq \text{rank}(S) \end{cases} \]

Since \(S(U) \subset V, T(S(U)) \subset T(V) \), i.e., \(R(T \circ S) \subset R(T) \). So

\[\text{rank}(T \circ S) \leq \text{rank}(T). \]

By Rank Theorem, \(\dim T(S(U)) \leq \dim S(U) \). Therefore,

\[\text{rank}(T \circ S) \leq \text{rank}(S). \]
Proof.

Note that

\[\text{rank}(T \circ S) \leq \min(\text{rank}(T), \text{rank}(S)) \iff \begin{cases}
\text{rank}(T \circ S) \leq \text{rank}(T) \\
\text{rank}(T \circ S) \leq \text{rank}(S)
\end{cases} \]

Since \(S(U) \subset V, T(S(U)) \subset T(V) \), i.e., \(R(T \circ S) \subset R(T) \). So

\[\text{rank}(T \circ S) \leq \text{rank}(T). \]

By Rank Theorem, \(\dim T(S(U)) \leq \dim S(U) \). Therefore,

\[\text{rank}(T \circ S) \leq \text{rank}(S). \]
Proof.

Suppose that S is surjective. Then $S(U) = V$ and hence $T(S(U)) = T(V)$, i.e., $R(T \circ S) = R(T)$. So

$$\text{rank}(T \circ S) = \text{rank}(T).$$

Suppose that T is injective. By Rank Theorem,

$$\dim T(S(U)) = \dim S(U).$$

Therefore,

$$\text{rank}(T \circ S) = \text{rank}(S).$$
Proof.

Suppose that S is surjective. Then $S(U) = V$ and hence $T(S(U)) = T(V)$, i.e., $R(T \circ S) = R(T)$. So

$$\text{rank}(T \circ S) = \text{rank}(T).$$

Suppose that T is injective. By Rank Theorem,

$$\dim T(S(U)) = \dim S(U).$$

Therefore,

$$\text{rank}(T \circ S) = \text{rank}(S).$$
Corollary

Let A be an $l \times m$ matrix and B be an $m \times n$ matrix. Then

- $\text{rank}(AB) \leq \min(\text{rank}(A), \text{rank}(B)) \leq \min(l, m, n)$.
- $\text{rank}(AB) = \text{rank}(A)$ if $\text{rank}(B) = m$.
- $\text{rank}(AB) = \text{rank}(B)$ if $\text{rank}(A) = m$.
- In summary, $\text{rank}(AB) = \min(\text{rank}(A), \text{rank}(B))$ if either $\text{rank}(A) = m$ or $\text{rank}(B) = m$.

For example,

$$\text{rank} \left(\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} \right) \leq 1.$$
Consequences of Rank Theorem

Ranks of Products of Matrices

Corollary

Let A be an $l \times m$ matrix and B be an $m \times n$ matrix. Then

- $\text{rank}(AB) \leq \min(\text{rank}(A), \text{rank}(B)) \leq \min(l, m, n)$.
- $\text{rank}(AB) = \text{rank}(A)$ if $\text{rank}(B) = m$.
- $\text{rank}(AB) = \text{rank}(B)$ if $\text{rank}(A) = m$.
- In summary, $\text{rank}(AB) = \min(\text{rank}(A), \text{rank}(B))$ if either $\text{rank}(A) = m$ or $\text{rank}(B) = m$.

For example,

$$
\text{rank} \left(\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_m
\end{bmatrix} \begin{bmatrix}
y_1 \\
y_2 \\
\cdots \\
y_n
\end{bmatrix} \right) \leq 1.
$$
Corollary

Let A be an $l \times m$ matrix and B be an $m \times n$ matrix. Then

- $\text{rank}(AB) \leq \min(\text{rank}(A), \text{rank}(B)) \leq \min(l, m, n)$.
- $\text{rank}(AB) = \text{rank}(A)$ if $\text{rank}(B) = m$.
- $\text{rank}(AB) = \text{rank}(B)$ if $\text{rank}(A) = m$.
- In summary, $\text{rank}(AB) = \min(\text{rank}(A), \text{rank}(B))$ if either $\text{rank}(A) = m$ or $\text{rank}(B) = m$.

For example,

$$\text{rank} \left(\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} \right) \leq 1.$$
Corollary

Let A be an $l \times m$ matrix and B be an $m \times n$ matrix. Then

- $\text{rank}(AB) \leq \min(\text{rank}(A), \text{rank}(B)) \leq \min(l, m, n)$.
- $\text{rank}(AB) = \text{rank}(A)$ if $\text{rank}(B) = m$.
- $\text{rank}(AB) = \text{rank}(B)$ if $\text{rank}(A) = m$.

In summary, $\text{rank}(AB) = \min(\text{rank}(A), \text{rank}(B))$ if either $\text{rank}(A) = m$ or $\text{rank}(B) = m$.

For example,

$$\text{rank} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} \leq 1.$$
Corollary

Let A be an $l \times m$ matrix and B be an $m \times n$ matrix. Then

1. $\text{rank}(AB) \leq \min(\text{rank}(A), \text{rank}(B)) \leq \min(l, m, n)$.
2. $\text{rank}(AB) = \text{rank}(A)$ if $\text{rank}(B) = m$.
3. $\text{rank}(AB) = \text{rank}(B)$ if $\text{rank}(A) = m$.
4. In summary, $\text{rank}(AB) = \min(\text{rank}(A), \text{rank}(B))$ if either $\text{rank}(A) = m$ or $\text{rank}(B) = m$.

For example,

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} \leq 1.$$
Corollary

Let A be an $l \times m$ matrix and B be an $m \times n$ matrix. Then

- $\text{rank}(AB) \leq \min(\text{rank}(A), \text{rank}(B)) \leq \min(l, m, n)$.
- $\text{rank}(AB) = \text{rank}(A)$ if $\text{rank}(B) = m$.
- $\text{rank}(AB) = \text{rank}(B)$ if $\text{rank}(A) = m$.

In summary, $\text{rank}(AB) = \min(\text{rank}(A), \text{rank}(B))$ if either $\text{rank}(A) = m$ or $\text{rank}(B) = m$.

For example,

$$
\text{rank} \left(\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} \right) \leq 1.
$$
Corollary

Let A be an $m \times n$ matrix. Then

- $\text{rank}(A) = \text{rank}(PAQ)$ for all nonsingular matrices P and Q.
- A has rank k if and only if there exist nonsingular matrices P and Q such that
 \[
 PAQ = \begin{bmatrix}
 I_k & 0 \\
 0 & 0
 \end{bmatrix}_{m \times n}
 \]
 where I_k is the $k \times k$ identity matrix. In other words, A can be reduced to the above matrix by a sequence of row and column reductions.
- A has rank k if there exists an $m \times k$ matrix B and a $k \times n$ matrix C, both of rank k, such that $A = BC$.
- $\text{rank}(A) = \text{rank}(A^T)$, i.e., $\dim \text{Row}(A) = \dim \text{Col}(A)$.
Corollary

Let \(A \) be an \(m \times n \) matrix. Then

- \(\text{rank}(A) = \text{rank}(PAQ) \) for all nonsingular matrices \(P \) and \(Q \).
- \(A \) has rank \(k \) if and only if there exist nonsingular matrices \(P \) and \(Q \) such that
 \[
 PAQ = \begin{bmatrix}
 I_k & 0 \\
 0 & 0
 \end{bmatrix}_{m \times n}
 \]
 where \(I_k \) is the \(k \times k \) identity matrix. In other words, \(A \) can be reduced to the above matrix by a sequence of row and column reductions.
- \(A \) has rank \(k \) if there exists an \(m \times k \) matrix \(B \) and a \(k \times n \) matrix \(C \), both of rank \(k \), such that \(A = BC \).
- \(\text{rank}(A) = \text{rank}(A^T) \), i.e., \(\dim \text{Row}(A) = \dim \text{Col}(A) \).
Corollary

Let A be an $m \times n$ matrix. Then

- $\text{rank}(A) = \text{rank}(PAQ)$ for all nonsingular matrices P and Q.
- A has rank k if and only if there exist nonsingular matrices P and Q such that

$$PAQ = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}_{m \times n}$$

where I_k is the $k \times k$ identity matrix. In other words, A can be reduced to the above matrix by a sequence of row and column reductions.

- A has rank k if there exists an $m \times k$ matrix B and a $k \times n$ matrix C, both of rank k, such that $A = BC$.
- $\text{rank}(A) = \text{rank}(A^T)$, i.e., $\dim \text{Row}(A) = \dim \text{Col}(A)$.
Corollary

Let A be an $m \times n$ matrix. Then

- $\text{rank}(A) = \text{rank}(PAQ)$ for all nonsingular matrices P and Q.
- A has rank k if and only if there exist nonsingular matrices P and Q such that
 \[PAQ = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}_{m \times n} \]
 where I_k is the $k \times k$ identity matrix. In other words, A can be reduced to the above matrix by a sequence of row and column reductions.
- A has rank k if there exists an $m \times k$ matrix B and a $k \times n$ matrix C, both of rank k, such that $A = BC$.
- $\text{rank}(A) = \text{rank}(A^T)$, i.e., $\dim \text{Row}(A) = \dim \text{Col}(A)$.

Consequences of Rank Theorem

Ranks of Products of Matrices
Corollary

Let A be an $m \times n$ matrix. Then

- $\text{rank}(A) = \text{rank}(PAQ)$ for all nonsingular matrices P and Q.
- A has rank k if and only if there exist nonsingular matrices P and Q such that
 \[PAQ = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}_{m \times n} \]

 where I_k is the $k \times k$ identity matrix. In other words, A can be reduced to the above matrix by a sequence of row and column reductions.

- A has rank k if there exists an $m \times k$ matrix B and a $k \times n$ matrix C, both of rank k, such that $A = BC$.
- $\text{rank}(A) = \text{rank}(A^T)$, i.e., $\text{dim} \text{ Row}(A) = \text{dim} \text{ Col}(A)$.
Proof of $A = BC$ and $\text{rank}(A) = \text{rank}(A^T)$.

Suppose that A has rank k. Then

$$PAQ = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix} \iff A = P^{-1} \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix} Q^{-1}$$

Let

$$B = P^{-1} \begin{bmatrix} I_k \\ 0 \end{bmatrix}_{m \times k} \quad \text{and} \quad C = \begin{bmatrix} I_k & 0 \end{bmatrix}_{k \times n} Q^{-1}.$$

Then $A = BC$. Obviously, $\text{rank}(B) = \text{rank}(C) = k$.

Since

$$PAQ = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}_{m \times n} \quad \Rightarrow \quad Q^T A^T P^T = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}_{n \times m}$$

$\text{rank}(A^T) = k = \text{rank}(A)$.

Xi Chen
Linear Algebra II Lecture 17
Proof of $A = BC$ and $\text{rank}(A) = \text{rank}(A^T)$.

Suppose that A has rank k. Then

$$PAQ = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix} \iff A = P^{-1} \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix} Q^{-1}$$

Let

$$B = P^{-1} \begin{bmatrix} I_k \\ 0 \end{bmatrix}_{m \times k} \quad \text{and} \quad C = \begin{bmatrix} I_k & 0 \end{bmatrix}_{k \times n} Q^{-1}.$$

Then $A = BC$. Obviously, $\text{rank}(B) = \text{rank}(C) = k$.

Since

$$PAQ = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}_{m \times n} \Rightarrow Q^T A^T P^T = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}_{n \times m}$$

$$\text{rank}(A^T) = k = \text{rank}(A).$$
Proof of $A = BC$ and $\text{rank}(A) = \text{rank}(A^T)$.

Suppose that A has rank k. Then

$$PAQ = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix} \iff A = P^{-1} \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix} Q^{-1}$$

Let

$$B = P^{-1} \begin{bmatrix} I_k \\ 0 \end{bmatrix}_{m \times k} \quad \text{and} \quad C = \begin{bmatrix} I_k & 0 \end{bmatrix}_{k \times n} Q^{-1}.$$

Then $A = BC$. Obviously, $\text{rank}(B) = \text{rank}(C) = k$. Since

$$PAQ = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}_{m \times n} \Rightarrow Q^T A^T P^T = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}_{n \times m}$$

$\text{rank}(A^T) = k = \text{rank}(A)$.
Let

\[A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & -1 & -1 & 0 \\ 0 & 2 & 1 & 1 \end{bmatrix} \]

Find the rank of \(A \) and invertible matrices \(P \) and \(Q \) such that

\[PAQ = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}. \]

First we apply row reductions to \([A \quad I_3]\):

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
2 & -1 & -1 & 0 & 0 & 1 & 0 \\
0 & 2 & 1 & 1 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Examples of Finding the Ranks of Matrices

Let

\[A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & -1 & -1 & 0 \\ 0 & 2 & 1 & 1 \end{bmatrix} \]

Find the rank of \(A \) and invertible matrices \(P \) and \(Q \) such that

\[PAQ = \begin{bmatrix} I_k & 0 \\ 0 & 0 \end{bmatrix}. \]

First we apply row reductions to \([A \ I_3] \):

\[
\begin{bmatrix}
\text{1} & 1 & 1 & 1 & 1 & 0 & 0 \\
2 & -1 & -1 & 0 & 0 & 1 & 0 \\
0 & 2 & 1 & 1 & 0 & 0 & 1
\end{bmatrix}
\]
Examples of Finding the Ranks of Matrices

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & -3 & -3 & -2 & -2 & 1 \\
0 & 2 & 1 & 1 & 0 \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 0 \\
1 & 3 \\
2 & 3 \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 0 \\
1 & 3 \\
2 & 3 \\
0 & -1 \\
-1 & 3 \\
4 & 3 \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

Therefore, \(\text{rank}(A) = 3 \) and
Therefore, rank(A) = 3 and
Then we apply column reductions to
Consequences of Rank Theorem

Examples of Finding the Ranks of Matrices

\[
\begin{bmatrix}
1 & 0 & 0 & \frac{1}{3} \\
0 & 1 & 0 & \frac{1}{3} \\
0 & 0 & 1 & \frac{1}{3}
\end{bmatrix} =
\begin{bmatrix}
\frac{1}{3} & \frac{1}{3} & 0 \\
-\frac{2}{3} & \frac{1}{3} & 1 \\
\frac{4}{3} & -\frac{2}{3} & -1
\end{bmatrix}_P
\]

Then we apply column reductions to

\[
\begin{bmatrix}
1 & 0 & 0 & \frac{1}{3} \\
0 & 1 & 0 & \frac{1}{3} \\
0 & 0 & 1 & \frac{1}{3} \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & -\frac{1}{3} \\
0 & 1 & 0 & -\frac{1}{3} \\
0 & 0 & 1 & -\frac{1}{3} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Therefore,

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 & \frac{1}{3} \\
0 & 1 & 0 & \frac{1}{3} \\
0 & 0 & 1 & \frac{1}{3}
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & -\frac{1}{3} \\
0 & 1 & 0 & -\frac{1}{3} \\
0 & 0 & 1 & -\frac{1}{3}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{1}{3} & \frac{1}{3} & 0 \\
-\frac{2}{3} & \frac{1}{3} & 1 \\
\frac{4}{3} & -\frac{2}{3} & -1
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 & -\frac{1}{3} \\
0 & 1 & 0 & -\frac{1}{3} \\
0 & 0 & 1 & -\frac{1}{3}
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & -\frac{1}{3} \\
0 & 1 & 0 & -\frac{1}{3} \\
0 & 0 & 1 & -\frac{1}{3}
\end{bmatrix}
\]

Xi Chen
Linear Algebra II Lecture 17
Theorem

Let \(A \) be an \(m \times n \) matrix. Then

\[
\text{rank}(A) = \text{rank}(A^T A) = \text{rank}(AA^T).
\]

Proof.

By Rank Theorem, it suffices to show that \(\text{Nul}(A) = \text{Nul}(A^T A) \).

Note that we always have \(\text{Nul}(A) \subset \text{Nul}(PA) \) for all matrices \(P \)
and hence \(\text{Nul}(A) \subset \text{Nul}(A^T A) \). It suffices to prove that \(\text{Nul}(A^T A) \subset \text{Nul}(A) \).

Let \(x \in \text{Nul}(A^T A) \). That is, \((A^T A)x = 0 \) and hence

\[
x^T A^T A x = 0 \Rightarrow (Ax)^T (Ax) = 0 \Rightarrow \|Ax\|^2 = 0 \Rightarrow Ax = 0.
\]

Namely, \(x \in \text{Nul}(A) \) and \(\text{Nul}(A^T A) \subset \text{Nul}(A) \).
Theorem

Let A be an $m \times n$ matrix. Then

\[
\text{rank}(A) = \text{rank}(A^T A) = \text{rank}(AA^T).
\]

Proof.

By Rank Theorem, it suffices to show that $\text{Nul}(A) = \text{Nul}(A^T A)$. Note that we always have $\text{Nul}(A) \subseteq \text{Nul}(PA)$ for all matrices P and hence $\text{Nul}(A) \subseteq \text{Nul}(A^T A)$. It suffices to prove that $\text{Nul}(A^T A) \subseteq \text{Nul}(A)$.

Let $x \in \text{Nul}(A^T A)$. That is, $(A^T A)x = 0$ and hence

\[
x^T A^T A x = 0 \Rightarrow (A x)^T (A x) = 0 \Rightarrow \|Ax\|^2 = 0 \Rightarrow Ax = 0.
\]

Namely, $x \in \text{Nul}(A)$ and $\text{Nul}(A^T A) \subseteq \text{Nul}(A)$.

Xi Chen

Linear Algebra II Lecture 17
Theorem

Let A be an $m \times n$ matrix. Then

$$\text{rank}(A) = \text{rank}(A^T A) = \text{rank}(AA^T).$$

Proof.

By Rank Theorem, it suffices to show that $\text{Nul}(A) = \text{Nul}(A^T A)$. Note that we always have $\text{Nul}(A) \subset \text{Nul}(PA)$ for all matrices P and hence $\text{Nul}(A) \subset \text{Nul}(A^T A)$. It suffices to prove that $\text{Nul}(A^T A) \subset \text{Nul}(A)$.

Let $x \in \text{Nul}(A^T A)$. That is, $(A^T A)x = 0$ and hence

$$x^T A^T A x = 0 \Rightarrow (Ax)^T (Ax) = 0 \Rightarrow ||Ax||^2 = 0 \Rightarrow Ax = 0.$$

Namely, $x \in \text{Nul}(A)$ and $\text{Nul}(A^T A) \subset \text{Nul}(A)$.