Outline

1. Rank of a Linear Transformation

2. Consequences of Rank Theorem
Rank

Definition

Let \(T : V \rightarrow W \) be a linear transformation. The *rank* of \(T \) is the dimension of its range \(R(T) \), i.e.,

\[
\text{rank}(T) = \dim R(T).
\]

Theorem

Let \(T : V \rightarrow W \) be a linear transformation between two vector spaces of finite dimensions. Then

\[
\text{rank}(T) = \text{rank}[T]_{B,C}
\]

where \([T]_{B,C}\) is the matrix representing \(T \) under bases \(B \) and \(C \).
Definition

Let $T : V \rightarrow W$ be a linear transformation. The *rank* of T is the dimension of its range $R(T)$, i.e.,

$$\text{rank}(T) = \dim R(T).$$

Theorem

Let $T : V \rightarrow W$ be a linear transformation between two vector spaces of finite dimensions. Then

$$\text{rank}(T) = \text{rank}[T]_{B,C}$$

where $[T]_{B,C}$ is the matrix representing T under bases B and C.
Rank Theorem

Let $T : V \rightarrow W$ be a linear transformation. If $\dim V < \infty$, then

$$\dim K(T) + \text{rank}(T) = \dim V.$$

Here are some remarks:

- $\text{rank}(T) \leq \dim V$; and since $R(T) \subset W$, $\text{rank}(T) \leq \dim W$; therefore,
 $$\text{rank}(T) \leq \min(\dim V, \dim W).$$

For example, a linear transformation $T : \mathbb{R}^3 \rightarrow \mathbb{R}^5$ has rank at most 3.
Let $T : V \to W$ be a linear transformation. If $\dim V < \infty$, then
\[\dim K(T) + \text{rank}(T) = \dim V. \]

Here are some remarks:

- $\text{rank}(T) \leq \dim V$; and since $R(T) \subset W$, $\text{rank}(T) \leq \dim W$; therefore,
 \[\text{rank}(T) \leq \min(\dim V, \dim W). \]

For example, a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^5$ has rank at most 3.
Let $T : V \rightarrow W$ be a linear transformation. If $\dim V < \infty$, then

$$\dim K(T) + \text{rank}(T) = \dim V.$$

Here are some remarks:

- $\text{rank}(T) \leq \dim V$; and since $R(T) \subset W$, $\text{rank}(T) \leq \dim W$; therefore,

$$\text{rank}(T) \leq \min(\dim V, \dim W).$$

For example, a linear transformation $T : \mathbb{R}^3 \rightarrow \mathbb{R}^5$ has rank at most 3.
Rank Theorem

Let $T : V \rightarrow W$ be a linear transformation. If $\dim V < \infty$, then

$$\dim K(T) + \text{rank}(T) = \dim V.$$

Here are some remarks:

- $\text{rank}(T) \leq \dim V$; and since $R(T) \subset W$, $\text{rank}(T) \leq \dim W$; therefore,

$$\text{rank}(T) \leq \min(\dim V, \dim W).$$

For example, a linear transformation $T : \mathbb{R}^3 \rightarrow \mathbb{R}^5$ has rank at most 3.

Xi Chen

Linear Algebra II Lecture 15
Rank Theorem

Let $T : V \to W$ be a linear transformation. If $\dim V < \infty$, then

$$\dim K(T) + \text{rank}(T) = \dim V.$$

Here are some remarks:

- $\text{rank}(T) \leq \dim V$; and since $R(T) \subset W$, $\text{rank}(T) \leq \dim W$; therefore,

$$\text{rank}(T) \leq \min(\dim V, \dim W).$$

For example, a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^5$ has rank at most 3.
Rank Theorem

- \(T \) cannot be onto if \(\dim V < \dim W \) since
 \[
 \dim R(T) = \text{rank}(T) \leq \dim V < \dim W \Rightarrow R(T) \neq W.
 \]

- \(T \) cannot be 1-1 if \(\dim V > \dim W \) since
 \[
 \dim K(T) = \dim V - \text{rank}(T) \geq \dim V - \dim W > 0
 \Rightarrow K(T) \neq \{0\}.
 \]

- \(\dim R(T) = \dim V \) if and only if \(K(T) = \{0\} \), i.e., \(T \) is 1-1.
- If \(\dim V = \dim W \), \(T \) is 1-1 if and only if \(T \) is onto since
 \[
 T \text{ is 1-1 } \iff K(T) = \{0\} \iff \dim K(T) = 0
 \iff \text{rank}(T) = \dim V = \dim W \iff R(T) = W
 \]
Rank Theorem

- **T cannot be onto if dim V < dim W** since
 \[\text{dim } R(T) = \text{rank}(T) \leq \text{dim } V < \text{dim } W \Rightarrow R(T) \neq W. \]

- **T cannot be 1-1 if dim V > dim W** since
 \[\text{dim } K(T) = \text{dim } V - \text{rank}(T) \geq \text{dim } V - \text{dim } W > 0 \]
 \[\Rightarrow K(T) \neq \{0\}. \]

- **dim R(T) = dim V if and only if K(T) = \{0\}, i.e., T is 1-1.**
- **If dim V = dim W, T is 1-1 if and only if T is onto since**
 \[T \text{ is 1-1} \iff K(T) = \{0\} \iff \text{dim } K(T) = 0 \]
 \[\iff \text{rank}(T) = \text{dim } V = \text{dim } W \iff R(T) = W. \]
Rank Theorem

- T cannot be onto if $\dim V < \dim W$ since
 \[\dim R(T) = \text{rank}(T) \leq \dim V < \dim W \implies R(T) \neq W. \]

- T cannot be 1-1 if $\dim V > \dim W$ since
 \[\dim K(T) = \dim V - \text{rank}(T) \geq \dim V - \dim W > 0 \]
 \[\implies K(T) \neq \{0\}. \]

- $\dim R(T) = \dim V$ if and only if $K(T) = \{0\}$, i.e., T is 1-1.
 - If $\dim V = \dim W$, T is 1-1 if and only if T is onto since
 \[T \text{ is 1-1} \iff K(T) = \{0\} \iff \dim K(T) = 0 \]
 \[\iff \text{rank}(T) = \dim V = \dim W \iff R(T) = W \]
Rank Theorem

- T cannot be onto if $\dim V < \dim W$ since
 \[\dim R(T) = \text{rank}(T) \leq \dim V < \dim W \implies R(T) \neq W. \]

- T cannot be 1-1 if $\dim V > \dim W$ since
 \[\dim K(T) = \dim V - \text{rank}(T) \geq \dim V - \dim W > 0 \]
 \[\implies K(T) \neq \{0\}. \]

- $\dim R(T) = \dim V$ if and only if $K(T) = \{0\}$, i.e., T is 1-1.
- If $\dim V = \dim W$, T is 1-1 if and only if T is onto since
 \[T \text{ is 1-1 } \iff K(T) = \{0\} \iff \dim K(T) = 0 \]
 \[\iff \text{rank}(T) = \dim V = \dim W \iff R(T) = W \]
Let $\dim K(T) = k$ and $\text{rank}(T) = r$. There is a basis
\[\{v_1, v_2, ..., v_k\} \] for $K(T)$ and a basis \[\{w_1, w_2, ..., w_r\} \] for $R(T)$. Since $w_1, w_2, ..., w_r \in R(T)$, there exist $u_1, u_2, ..., u_r \in V$ such that
\[T(u_1) = w_1, T(u_2) = w_2, ..., T(u_r) = w_r. \]
It suffices to show that \[\{v_1, v_2, ..., v_k, u_1, u_2, ..., u_r\} \] is a basis of V. That is,
- \[V = \text{Span}\{u_1, u_2, ..., u_r, v_1, v_2, ..., v_k\}; \]
- $u_1, u_2, ..., u_r, v_1, v_2, ..., v_k$ are linearly independent.
Let $\dim K(T) = k$ and $\text{rank}(T) = r$. There is a basis
$\{v_1, v_2, \ldots, v_k\}$ for $K(T)$ and a basis $\{w_1, w_2, \ldots, w_r\}$ for $R(T)$. Since $w_1, w_2, \ldots, w_r \in R(T)$, there exist $u_1, u_2, \ldots, u_r \in V$ such that

$$T(u_1) = w_1, \ T(u_2) = w_2, \ldots, \ T(u_r) = w_r.$$

It suffices to show that $\{v_1, v_2, \ldots, v_k, u_1, u_2, \ldots, u_r\}$ is a basis of V. That is,

- $V = \text{Span}\{u_1, u_2, \ldots, u_r, v_1, v_2, \ldots, v_k\}$;
- $u_1, u_2, \ldots, u_r, v_1, v_2, \ldots, v_k$ are linearly independent.
Let \(\text{dim } K(T) = k \) and \(\text{rank}(T) = r \). There is a basis \(\{v_1, v_2, ..., v_k\} \) for \(K(T) \) and a basis \(\{w_1, w_2, ..., w_r\} \) for \(R(T) \). Since \(w_1, w_2, ..., w_r \in R(T) \), there exist \(u_1, u_2, ..., u_r \in V \) such that

\[
T(u_1) = w_1, \quad T(u_2) = w_2, \quad ..., \quad T(u_r) = w_r.
\]

It suffices to show that \(\{v_1, v_2, ..., v_k, u_1, u_2, ..., u_r\} \) is a basis of \(V \). That is,

- \(V = \text{Span}\{u_1, u_2, ..., u_r, v_1, v_2, ..., v_k\} \);
- \(u_1, u_2, ..., u_r, v_1, v_2, ..., v_k \) are linearly independent.
Proof of $V = \text{Span}\{u_1, u_2, \ldots, u_r, v_1, v_2, \ldots, v_k\}$

For every $v \in V$, $T(v) \in R(T)$ and hence

$$T(v) = a_1w_1 + a_2w_2 + \ldots + a_rw_r = a_1T(u_1) + a_2T(u_2) + \ldots + a_rT(u_r) = T(a_1u_1 + a_2u_2 + \ldots + a_ru_r)$$

Therefore, $T(v - a_1u_1 - a_2u_2 - \ldots - a_ru_r) = 0$, i.e.,

$$v - a_1u_1 - a_2u_2 - \ldots - a_ru_r \in K(T).$$

It follows that

$$v - a_1u_1 - a_2u_2 - \ldots - a_ru_r = b_1v_1 + b_2v_2 + \ldots + b_kv_k$$

$$\Rightarrow v = a_1u_1 + a_2u_2 + \ldots + a_ru_r + b_1v_1 + b_2v_2 + \ldots + b_kv_k$$
Proof of $V = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_r, \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\}$

For every $\mathbf{v} \in V$, $T(\mathbf{v}) \in R(T)$ and hence

$$T(\mathbf{v}) = a_1 \mathbf{w}_1 + a_2 \mathbf{w}_2 + \ldots + a_r \mathbf{w}_r$$

$$= a_1 T(\mathbf{u}_1) + a_2 T(\mathbf{u}_2) + \ldots + a_r T(\mathbf{u}_r)$$

$$= T(a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \ldots + a_r \mathbf{u}_r)$$

Therefore, $T(\mathbf{v} - a_1 \mathbf{u}_1 - a_2 \mathbf{u}_2 - \ldots - a_r \mathbf{u}_r) = 0$, i.e.,

$$\mathbf{v} - a_1 \mathbf{u}_1 - a_2 \mathbf{u}_2 - \ldots - a_r \mathbf{u}_r \in K(T).$$

It follows that

$$\mathbf{v} - a_1 \mathbf{u}_1 - a_2 \mathbf{u}_2 - \ldots - a_r \mathbf{u}_r = b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + \ldots + b_k \mathbf{v}_k$$

$$\Rightarrow \mathbf{v} = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \ldots + a_r \mathbf{u}_r + b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + \ldots + b_k \mathbf{v}_k$$
Proof of $V = \text{Span}\{u_1, u_2, \ldots, u_r, v_1, v_2, \ldots, v_k\}$

For every $v \in V$, $T(v) \in R(T)$ and hence

$$T(v) = a_1w_1 + a_2w_2 + \ldots + a_rw_r$$
$$= a_1T(u_1) + a_2T(u_2) + \ldots + a_rT(u_r)$$
$$= T(a_1u_1 + a_2u_2 + \ldots + a_ru_r)$$

Therefore, $T(v - a_1u_1 - a_2u_2 - \ldots - a_ru_r) = 0$, i.e.,

$$v - a_1u_1 - a_2u_2 - \ldots - a_ru_r \in K(T).$$

It follows that

$$v - a_1u_1 - a_2u_2 - \ldots - a_ru_r = b_1v_1 + b_2v_2 + \ldots + b_kv_k$$
$$\Rightarrow v = a_1u_1 + a_2u_2 + \ldots + a_ru_r + b_1v_1 + b_2v_2 + \ldots + b_kv_k$$
Otherwise,

$$a_1 u_1 + a_2 u_2 + \ldots + a_r u_r + b_1 v_1 + b_2 v_2 + \ldots + b_k v_k = 0$$

for some $a_1, a_2, \ldots, a_r, b_1, b_2, \ldots, b_k \in \mathbb{R}$, not all zero. Then

$$a_1 \underbrace{T(u_1)}_{w_1} + a_2 \underbrace{T(u_2)}_{w_2} + \ldots + a_r \underbrace{T(u_r)}_{w_r} + \underbrace{T(b_1 v_1 + b_2 v_2 + \ldots + b_k v_k)}_{0} = 0$$

And since w_1, w_2, \ldots, w_r are linearly independent,

$$a_1 = a_2 = \ldots = a_r = 0.$$ Therefore,

$$b_1 v_1 + b_2 v_2 + \ldots + b_k v_k = 0.$$ And since v_1, v_2, \ldots, v_k are linearly independent,

$$b_1 = b_2 = \ldots = b_k = 0.$$ Contradiction.
Otherwise,

\[a_1 u_1 + a_2 u_2 + ... + a_r u_r + b_1 v_1 + b_2 v_2 + ... + b_k v_k = 0 \]

for some \(a_1, a_2, ..., a_r, b_1, b_2, ..., b_k \in \mathbb{R} \), not all zero. Then

\[
\begin{align*}
 a_1 \begin{bmatrix} \mathbf{w}_1 \\ T(\mathbf{u}_1) \end{bmatrix} + a_2 \begin{bmatrix} \mathbf{w}_2 \\ T(\mathbf{u}_2) \end{bmatrix} + ... + a_r \begin{bmatrix} \mathbf{w}_r \\ T(\mathbf{u}_r) \end{bmatrix} + T\left(b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + ... + b_k \mathbf{v}_k \right) &= 0
\end{align*}
\]

And since \(\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_r \) are linearly independent, \(a_1 = a_2 = ... = a_r = 0 \). Therefore,

\[b_1 v_1 + b_2 v_2 + ... + b_k v_k = 0. \]

And since \(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k \) are linearly independent, \(b_1 = b_2 = ... = b_k = 0 \). Contradiction.
Linear Independence of \(u_1, u_2, \ldots, u_r, v_1, v_2, \ldots, v_k \)

Otherwise,

\[
 a_1 u_1 + a_2 u_2 + \ldots + a_r u_r + b_1 v_1 + b_2 v_2 + \ldots + b_k v_k = 0
\]

for some \(a_1, a_2, \ldots, a_r, b_1, b_2, \ldots, b_k \in \mathbb{R} \), not all zero. Then

\[
 a_1 T(u_1) + a_2 T(u_2) + \ldots + a_r T(u_r) + T(b_1 v_1 + b_2 v_2 + \ldots + b_k v_k) = 0
\]

And since \(w_1, w_2, \ldots, w_r \) are linearly independent,

\(a_1 = a_2 = \ldots = a_r = 0 \). Therefore,

\[
 b_1 v_1 + b_2 v_2 + \ldots + b_k v_k = 0.
\]

And since \(v_1, v_2, \ldots, v_k \) are linearly independent,

\(b_1 = b_2 = \ldots = b_k = 0 \). Contradiction.
Otherwise,

\[a_1u_1 + a_2u_2 + \ldots + a_ru_r + b_1v_1 + b_2v_2 + \ldots + b_kv_k = 0 \]

for some \(a_1, a_2, \ldots, a_r, b_1, b_2, \ldots, b_k \in \mathbb{R} \), not all zero. Then

\[\underbrace{T(u_1)}_{w_1} + \underbrace{T(u_2)}_{w_2} + \ldots + \underbrace{T(u_r)}_{w_r} + \underbrace{T(b_1v_1 + b_2v_2 + \ldots + b_kv_k)}_{0} = 0 \]

And since \(w_1, w_2, \ldots, w_r \) are linearly independent, \(a_1 = a_2 = \ldots = a_r = 0 \). Therefore,

\[b_1v_1 + b_2v_2 + \ldots + b_kv_k = 0. \]

And since \(v_1, v_2, \ldots, v_k \) are linearly independent, \(b_1 = b_2 = \ldots = b_k = 0 \). Contradiction.
Linear Independence of $u_1, u_2, \ldots, u_r, v_1, v_2, \ldots, v_k$

Otherwise,

$$a_1 u_1 + a_2 u_2 + \ldots + a_r u_r + b_1 v_1 + b_2 v_2 + \ldots + b_k v_k = 0$$

for some $a_1, a_2, \ldots, a_r, b_1, b_2, \ldots, b_k \in \mathbb{R}$, not all zero. Then

$$a_1 \underbrace{T(u_1)}_{w_1} + a_2 \underbrace{T(u_2)}_{w_2} + \ldots + a_r \underbrace{T(u_r)}_{w_r} + \underbrace{T(b_1 v_1 + b_2 v_2 + \ldots + b_k v_k)}_{0} = 0$$

And since w_1, w_2, \ldots, w_r are linearly independent, $a_1 = a_2 = \ldots = a_r = 0$. Therefore,

$$b_1 v_1 + b_2 v_2 + \ldots + b_k v_k = 0.$$

And since v_1, v_2, \ldots, v_k are linearly independent, $b_1 = b_2 = \ldots = b_k = 0$. Contradiction.
Let $T : V \rightarrow W$ be a linear transformation between two vector spaces of dimensions $\dim V = n$ and $\dim W = m$ and let $A = [T]$ be the matrix representing T. Then

$$T \text{ 1-1 } \iff K(T) = \{0\} \iff \text{Nul}(A) = \{0\}.$$

$$T \text{ onto } \iff R(T) = W \iff \text{rank}(T) = \dim W \iff \text{rank}(A) = m.$$

T bijective $\iff T$ 1-1 and onto $\iff K(T) = \{0\}, \text{rank}(T) = m$

A invertible $\iff \text{Nul}(A) = \{0\}, \text{rank}(A) = m$
Let $T : V \rightarrow W$ be a linear transformation between two vector spaces of dimensions $\dim V = n$ and $\dim W = m$ and let $A = [T]$ be the matrix representing T. Then

\[T \text{ 1-1} \iff K(T) = \{0\} \iff \text{Nul}(A) = \{0\}. \]

\[T \text{ onto} \iff R(T) = W \iff \text{rank}(T) = \dim W \iff \text{rank}(A) = m \]

\[T \text{ bijective} \iff T \text{ 1-1 and onto} \iff K(T) = \{0\}, \text{rank}(T) = m \]

\[A \text{ invertible} \iff \text{Nul}(A) = \{0\}, \text{rank}(A) = m \]
Let $T : V \to W$ be a linear transformation between two vector spaces of dimensions $\dim V = n$ and $\dim W = m$ and let $A = [T]$ be the matrix representing T. Then

$$T \text{ 1-1 } \iff K(T) = \{0\} \iff \text{Nul}(A) = \{0\}. $$

$$T \text{ onto } \iff R(T) = W \iff \text{rank}(T) = \dim W \iff \text{rank}(A) = m$$

T bijective $\iff T$ 1-1 and onto $\iff K(T) = \{0\}, \text{rank}(T) = m$

A invertible $\iff \text{Nul}(A) = \{0\}, \text{rank}(A) = m$
Let $T : V \rightarrow W$ be a linear transformation between two vector spaces of dimensions $\dim V = n$ and $\dim W = m$ and let $A = [T]$ be the matrix representing T. Then

$$T \ 1-1 \iff K(T) = \{0\} \iff \text{Nul}(A) = \{0\}.$$

$$T \ 	ext{onto} \iff R(T) = W \iff \text{rank}(T) = \dim W \iff \text{rank}(A) = m.$$

$$T \ 	ext{bijective} \iff T \ 1-1 \ 	ext{and onto} \iff K(T) = \{0\}, \text{rank}(T) = m \iff \text{Nul}(A) = \{0\}, \text{rank}(A) = m.$$

A invertible
Corollary

Let A be an $m \times n$ matrix. Then

- $\text{rank}(A) + \dim \text{Nul}(A) = n$.
- The solution set of $Ax = 0$ is a subspace of \mathbb{R}^n of dimension $n - \text{rank}(A)$. In particular, if $m < n$, $Ax = 0$ has infinitely many solutions.

- $Ax = b$ has a solution if and only if $b \in \text{Col}(A)$, or equivalently, $\text{rank}(A) = \text{rank} \begin{bmatrix} A & b \end{bmatrix}$. If x_0 is a solution of $Ax = b$, then

$$\{ x : Ax = b \} = x_0 + \text{Nul}(A) = \{ x_0 + v : v \in \text{Nul}(A) \}.$$

In particular, if $m < n$, $Ax = b$ has either no solutions or infinitely many solutions.
Corollary

Let A be an $m \times n$ matrix. Then

1. $\text{rank}(A) + \dim \text{Nul}(A) = n$.
2. The solution set of $Ax = 0$ is a subspace of \mathbb{R}^n of dimension $n - \text{rank}(A)$. In particular, if $m < n$, $Ax = 0$ has infinitely many solutions.
3. $Ax = b$ has a solution if and only if $b \in \text{Col}(A)$, or equivalently, $\text{rank}(A) = \text{rank} \begin{bmatrix} A & b \end{bmatrix}$. If x_0 is a solution of $Ax = b$, then

$$\{x : Ax = b\} = x_0 + \text{Nul}(A) = \{x_0 + v : v \in \text{Nul}(A)\}.$$

In particular, if $m < n$, $Ax = b$ has either no solutions or infinitely many solutions.
Corollary

Let A be an $m \times n$ matrix. Then

- $\text{rank}(A) + \dim \text{Nul}(A) = n$.
- The solution set of $Ax = 0$ is a subspace of \mathbb{R}^n of dimension $n - \text{rank}(A)$. In particular, if $m < n$, $Ax = 0$ has infinitely many solutions.
- $Ax = b$ has a solution if and only if $b \in \text{Col}(A)$, or equivalently, $\text{rank}(A) = \text{rank} \begin{bmatrix} A & b \end{bmatrix}$. If x_0 is a solution of $Ax = b$, then

$$\{x : Ax = b\} = x_0 + \text{Nul}(A) = \{x_0 + v : v \in \text{Nul}(A)\}.$$

In particular, if $m < n$, $Ax = b$ has either no solutions or infinitely many solutions.
Corollary

Let A be an $m \times n$ matrix. Then

- $\text{rank}(A) + \dim \text{Nul}(A) = n$.
- The solution set of $Ax = 0$ is a subspace of \mathbb{R}^n of dimension $n - \text{rank}(A)$. In particular, if $m < n$, $Ax = 0$ has infinitely many solutions.

- $Ax = b$ has a solution if and only if $b \in \text{Col}(A)$, or equivalently, $\text{rank}(A) = \text{rank} \begin{bmatrix} A & b \end{bmatrix}$. If x_0 is a solution of $Ax = b$, then

$$\{x : Ax = b\} = x_0 + \text{Nul}(A) = \{x_0 + v : v \in \text{Nul}(A)\}.$$

In particular, if $m < n$, $Ax = b$ has either no solutions or infinitely many solutions.
Consequences of Rank Theorem

Corollary

Let A be an $m \times n$ matrix. Then

- $\text{rank}(A) + \text{dim} \text{Null}(A) = n$.
- The solution set of $Ax = 0$ is a subspace of \mathbb{R}^n of dimension $n - \text{rank}(A)$. In particular, if $m < n$, $Ax = 0$ has infinitely many solutions.
- $Ax = b$ has a solution if and only if $b \in \text{Col}(A)$, or equivalently, $\text{rank}(A) = \text{rank} \begin{bmatrix} A & b \end{bmatrix}$. If x_0 is a solution of $Ax = b$, then

$$\{ x : Ax = b \} = x_0 + \text{Null}(A) = \{ x_0 + v : v \in \text{Null}(A) \}.$$

In particular, if $m < n$, $Ax = b$ has either no solutions or infinitely many solutions.
Proof.

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation given by $T(x) = Ax$. Then

$$[T] = A, \dim K(T) = \dim \text{Nul}(A),$$

$$\text{rank}(T) = \dim R(T) = \dim \text{Col}(A) = \text{rank}(A).$$

$Ax = b$ has a solution if and only if $T(x) = b$ for some x, i.e.,

$$b \in R(T) \iff b \in \text{Col}(A)$$

$$\iff \text{Col}(A) = \text{Col}[A \ b] \iff \text{rank}(A) = \text{rank}[A \ b].$$

Finally, if x_0 and x_1 are two solutions of $Ax = b$. Then

$$T(x_1 - x_0) = T(x_1) - T(x_0) = b - b = 0,$$ i.e.,

$$x_1 - x_0 \in K(T) = \text{Nul}(A) \Rightarrow x_1 \in x_0 + \text{Nul}(A).$$
Consequences of Rank Theorem

Proof.
Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be the linear transformation given by $T(x) = Ax$. Then

$$[T] = A, \dim K(T) = \dim \text{Nul}(A),$$

$$\text{rank}(T) = \dim R(T) = \dim \text{Col}(A) = \text{rank}(A).$$

$Ax = b$ has a solution if and only if $T(x) = b$ for some x, i.e.,

$$b \in R(T) \iff b \in \text{Col}(A)$$

$$\iff \text{Col}(A) = \text{Col} \begin{bmatrix} A & b \end{bmatrix} \iff \text{rank}(A) = \text{rank} \begin{bmatrix} A & b \end{bmatrix}.$$

Finally, if x_0 and x_1 are two solutions of $Ax = b$. Then

$$T(x_1 - x_0) = T(x_1) - T(x_0) = b - b = 0, \text{ i.e.,}$$

$$x_1 - x_0 \in K(T) = \text{Nul}(A) \Rightarrow x_1 \in x_0 + \text{Nul}(A).$$
Proof.

Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be the linear transformation given by $T(x) = Ax$. Then

$$[T] = A, \dim K(T) = \dim \text{Nul}(A),$$

$$\text{rank}(T) = \dim R(T) = \dim \text{Col}(A) = \text{rank}(A).$$

$Ax = b$ has a solution if and only if $T(x) = b$ for some x, i.e.,

$$b \in R(T) \iff b \in \text{Col}(A) \iff \text{Col}(A) = \text{Col} \begin{bmatrix} A & b \end{bmatrix} \iff \text{rank}(A) = \text{rank} \begin{bmatrix} A & b \end{bmatrix}.$$

Finally, if x_0 and x_1 are two solutions of $Ax = b$. Then

$$T(x_1 - x_0) = T(x_1) - T(x_0) = b - b = 0,$$

i.e.,

$$x_1 - x_0 \in K(T) = \text{Nul}(A) \Rightarrow x_1 \in x_0 + \text{Nul}(A).$$
Rank of a Linear Transformation
Consequences of Rank Theorem

Consequences of Rank Theorem

Proof. Let \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) be the linear transformation given by \(T(x) = Ax \). Then
\[
[T] = A, \quad \dim K(T) = \dim \operatorname{Nul}(A), \quad \text{rank}(T) = \dim R(T) = \dim \operatorname{Col}(A) = \text{rank}(A).
\]

\(Ax = b \) has a solution if and only if \(T(x) = b \) for some \(x \), i.e.,
\[
b \in R(T) \iff b \in \operatorname{Col}(A) \iff \operatorname{Col}(A) = \operatorname{Col}[A \ b] \iff \text{rank}(A) = \text{rank} [A \ b].
\]

Finally, if \(x_0 \) and \(x_1 \) are two solutions of \(Ax = b \). Then
\[
T(x_1 - x_0) = T(x_1) - T(x_0) = b - b = 0, \quad \text{i.e.,} \quad x_1 - x_0 \in K(T) = \operatorname{Nul}(A) \Rightarrow x_1 \in x_0 + \operatorname{Nul}(A).
\]
Corollary

Let A be an $n \times n$ matrix. Then the following are equivalent:

- A is nonsingular (det $A \neq 0$).
- A is invertible (A has an inverse A^{-1} satisfying $AA^{-1} = A^{-1}A = I$).
- Nul(A) = \{0\}.
- $Ax = 0$ has only one solution.
- rank(A) = n.
- $Ax = b$ has a solution for all $b \in \mathbb{R}^n$.
Corollary

Let A be an $n \times n$ matrix. Then the following are equivalent:

- A is nonsingular ($\det A \neq 0$).
- A is invertible (A has an inverse A^{-1} satisfying $AA^{-1} = A^{-1}A = I$).
- $\text{Nul}(A) = \{0\}$.
- $Ax = 0$ has only one solution.
- $\text{rank}(A) = n$.
- $Ax = b$ has a solution for all $b \in \mathbb{R}^n$.

Xi Chen

Linear Algebra II Lecture 15
Corollary

Let A be an $n \times n$ matrix. Then the following are equivalent:

- A is nonsingular ($\det A \neq 0$).
- A is invertible (A has an inverse A^{-1} satisfying $AA^{-1} = A^{-1}A = I$).
- $\text{Nul}(A) = \{0\}$.
- $Ax = 0$ has only one solution.
- $\text{rank}(A) = n$.
- $Ax = b$ has a solution for all $b \in \mathbb{R}^n$.
Corollary

Let A be an $n \times n$ matrix. Then the following are equivalent:

- A is nonsingular ($\det A \neq 0$).
- A is invertible (A has an inverse A^{-1} satisfying $AA^{-1} = A^{-1}A = I$).
- $\text{Nul}(A) = \{0\}$.
- $Ax = 0$ has only one solution.
- $\text{rank}(A) = n$.
- $Ax = b$ has a solution for all $b \in \mathbb{R}^n$.
Consequences of Rank Theorem

Corollary

Let A be an $n \times n$ matrix. Then the following are equivalent:

- A is nonsingular (det $A \neq 0$).
- A is invertible (A has an inverse A^{-1} satisfying $AA^{-1} = A^{-1}A = I$).
- $\text{Nul}(A) = \{0\}$.
- $Ax = 0$ has only one solution.
- $\text{rank}(A) = n$.
- $Ax = b$ has a solution for all $b \in \mathbb{R}^n$.
Corollary

Let A be an $n \times n$ matrix. Then the following are equivalent:

- A is nonsingular (det $A \neq 0$).
- A is invertible (A has an inverse A^{-1} satisfying $AA^{-1} = A^{-1}A = I$).
- $\text{Nul}(A) = \{0\}$.
- $Ax = 0$ has only one solution.
- $\text{rank}(A) = n$.
- $Ax = b$ has a solution for all $b \in \mathbb{R}^n$.
Corollary

Let A be an $n \times n$ matrix. Then the following are equivalent:

- A is nonsingular ($\det A \neq 0$).
- A is invertible (A has an inverse A^{-1} satisfying $AA^{-1} = A^{-1}A = I$).
- $\text{Nul}(A) = \{0\}$.
- $Ax = 0$ has only one solution.
- $\text{rank}(A) = n$.
- $Ax = b$ has a solution for all $b \in \mathbb{R}^n$.
Proof.

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation given by $T(x) = Ax$. Then $[T] = A$ and

$$\det A \neq 0 \iff A \text{ invertible} \iff T \text{ bijective}$$

$$\text{Nul}(A) = \{0\} \iff T \text{ injective}$$

$$\text{rank}(A) = n \iff T \text{ onto}$$

where CR = Cramer’s Rule and RT = Rank Theorem.