Linear Algebra II Lecture 13

Xi Chen¹

¹University of Alberta

February 5, 2014
Outline

1. Injection, Surjection and Isomorphism

2. Lagrange Interpolation
Definition

Definition of Injection, Surjection and Bijection

We call a map \(f : X \rightarrow Y \) an injection (injective, one-to-one, 1-1) if \(f(x_1) \neq f(x_2) \) for all \(x_1 \neq x_2 \in X \).

We call a map \(f : X \rightarrow Y \) a surjection (surjective, onto) if \(f(X) = Y \), i.e., for every \(y \in Y \), there exists \(x \in X \) such that \(f(x) = y \).

We call a map \(f : X \rightarrow Y \) a bijection (bijective) if it is 1-1 and onto. A bijection \(f : X \rightarrow Y \) has an inverse \(f^{-1} : Y \rightarrow X \) such that \(f \circ f^{-1} = 1_Y \) and \(f^{-1} \circ f = 1_X \), where \(1_X \) and \(1_Y \) are the identity maps on \(X \) and \(Y \).

Isomorphism

A linear transformation \(T : V \rightarrow W \) is an isomorphism if it is an bijection. Two vector spaces are isomorphic (written as \(V \cong W \)) if there is an isomorphism \(T : V \rightarrow W \).
Definition of Injection, Surjection and Bijection

We call a map $f : X \rightarrow Y$ an injection (injective, one-to-one, 1-1) if $f(x_1) \neq f(x_2)$ for all $x_1 \neq x_2 \in X$.

We call a map $f : X \rightarrow Y$ a surjection (surjective, onto) if $f(X) = Y$, i.e., for every $y \in Y$, there exists $x \in X$ such that $f(x) = y$.

We call a map $f : X \rightarrow Y$ a bijection (bijective) if it is 1-1 and onto. A bijection $f : X \rightarrow Y$ has an inverse $f^{-1} : Y \rightarrow X$ such that $f \circ f^{-1} = 1_Y$ and $f^{-1} \circ f = 1_X$, where 1_X and 1_Y are the identity maps on X and Y.

Isomorphism

A linear transformation $T : V \rightarrow W$ is an isomorphism if it is an bijection. Two vector spaces are isomorphic (written as $V \cong W$) if there is an isomorphism $T : V \rightarrow W$.
Definition of Injection, Surjection and Bijection

We call a map \(f : X \rightarrow Y \) an injection (injective, one-to-one, 1-1) if \(f(x_1) \neq f(x_2) \) for all \(x_1 \neq x_2 \in X \).

We call a map \(f : X \rightarrow Y \) a surjection (surjective, onto) if \(f(X) = Y \), i.e., for every \(y \in Y \), there exists \(x \in X \) such that \(f(x) = y \).

We call a map \(f : X \rightarrow Y \) a bijection (bijective) if it is 1-1 and onto. A bijection \(f : X \rightarrow Y \) has an inverse \(f^{-1} : Y \rightarrow X \) such that \(f \circ f^{-1} = 1_Y \) and \(f^{-1} \circ f = 1_X \), where \(1_X \) and \(1_Y \) are the identity maps on \(X \) and \(Y \).

Isomorphism

A linear transformation \(T : V \rightarrow W \) is an isomorphism if it is an bijection. Two vector spaces are isomorphic (written as \(V \cong W \)) if there is an isomorphism \(T : V \rightarrow W \).
Definition of Injection, Surjection and Bijection

We call a map \(f : X \rightarrow Y \) an injection (injective, one-to-one, 1-1) if \(f(x_1) \neq f(x_2) \) for all \(x_1 \neq x_2 \in X \).

We call a map \(f : X \rightarrow Y \) a surjection (surjective, onto) if \(f(X) = Y \), i.e., for every \(y \in Y \), there exists \(x \in X \) such that \(f(x) = y \).

We call a map \(f : X \rightarrow Y \) a bijection (bijective) if it is 1-1 and onto. A bijection \(f : X \rightarrow Y \) has an inverse \(f^{-1} : Y \rightarrow X \) such that \(f \circ f^{-1} = 1_Y \) and \(f^{-1} \circ f = 1_X \), where \(1_X \) and \(1_Y \) are the identity maps on \(X \) and \(Y \).

Isomorphism

A linear transformation \(T : V \rightarrow W \) is an isomorphism if it is an bijection. Two vector spaces are isomorphic (written as \(V \cong W \)) if there is an isomorphism \(T : V \rightarrow W \).
Definition

Definition of Injection, Surjection and Bijection

We call a map \(f : X \rightarrow Y \) an injection (injective, one-to-one, 1-1) if \(f(x_1) \neq f(x_2) \) for all \(x_1 \neq x_2 \in X \).

We call a map \(f : X \rightarrow Y \) a surjection (surjective, onto) if \(f(X) = Y \), i.e., for every \(y \in Y \), there exists \(x \in X \) such that \(f(x) = y \).

We call a map \(f : X \rightarrow Y \) a bijection (bijective) if it is 1-1 and onto. A bijection \(f : X \rightarrow Y \) has an inverse \(f^{-1} : Y \rightarrow X \) such that \(f \circ f^{-1} = 1_Y \) and \(f^{-1} \circ f = 1_X \), where \(1_X \) and \(1_Y \) are the identity maps on \(X \) and \(Y \).

Isomorphism

A linear transformation \(T : V \rightarrow W \) is an isomorphism if it is an bijection. Two vector spaces are isomorphic (written as \(V \cong W \)) if there is an isomorphism \(T : V \rightarrow W \).
Theorem
Let $T : V \rightarrow W$ be a linear transformation. Then

- T is 1-1 if and only if $K(T) = \{0\}$;
- T is onto if and only if $R(T) = W$.

Proof.
If T is 1-1, then $T(v) \neq T(0) = 0$ for all $v \neq 0$. Therefore, $v \notin K(T)$ for all $v \neq 0$. That is, $K(T) = \{0\}$.

Suppose that $K(T) = \{0\}$. If T is not 1-1, then there exists $v_1 \neq v_2$ such that $T(v_1) = T(v_2)$. Then

$$T(v_1 - v_2) = T(v_1) - T(v_2) = 0$$

and $v_1 - v_2 \neq 0 \in K(T)$. Contradiction.
Theorem

Let $T : V \rightarrow W$ be a linear transformation. Then

- T is 1-1 if and only if $K(T) = \{0\}$;
- T is onto if and only if $R(T) = W$.

Proof.

If T is 1-1, then $T(v) \neq T(0) = 0$ for all $v \neq 0$. Therefore, $v \notin K(T)$ for all $v \neq 0$. That is, $K(T) = \{0\}$.

Suppose that $K(T) = \{0\}$. If T is not 1-1, then there exists $v_1 \neq v_2$ such that $T(v_1) = T(v_2)$. Then

$$T(v_1 - v_2) = T(v_1) - T(v_2) = 0$$

and $v_1 - v_2 \neq 0 \in K(T)$. Contradiction.
Theorem

Let $T : V \rightarrow W$ be a linear transformation. Then

- T is 1-1 if and only if $K(T) = \{0\}$;
- T is onto if and only if $R(T) = W$.

Proof.

If T is 1-1, then $T(v) \neq T(0) = 0$ for all $v \neq 0$. Therefore, $v \notin K(T)$ for all $v \neq 0$. That is, $K(T) = \{0\}$.

Suppose that $K(T) = \{0\}$. If T is not 1-1, then there exists $v_1 \neq v_2$ such that $T(v_1) = T(v_2)$. Then

$$T(v_1 - v_2) = T(v_1) - T(v_2) = 0$$

and $v_1 - v_2 \neq 0 \in K(T)$. Contradiction.
Theorem

Let \(T : V \to W \) be a linear transformation. Then

- \(T \) is 1-1 if and only if \(K(T) = \{0\} \);
- \(T \) is onto if and only if \(R(T) = W \).

Proof.

If \(T \) is 1-1, then \(T(\mathbf{v}) \neq T(0) = 0 \) for all \(\mathbf{v} \neq 0 \). Therefore, \(\mathbf{v} \notin K(T) \) for all \(\mathbf{v} \neq 0 \). That is, \(K(T) = \{0\} \).

Suppose that \(K(T) = \{0\} \). If \(T \) is not 1-1, then there exists \(\mathbf{v}_1 \neq \mathbf{v}_2 \) such that \(T(\mathbf{v}_1) = T(\mathbf{v}_2) \). Then

\[
T(\mathbf{v}_1 - \mathbf{v}_2) = T(\mathbf{v}_1) - T(\mathbf{v}_2) = 0
\]

and \(\mathbf{v}_1 - \mathbf{v}_2 \neq 0 \in K(T) \). Contradiction.
Let $T : V \rightarrow W$ be an isomorphism. Then T^{-1} is also a linear transformation.

In addition, if V is finite dimensional, $\dim V = \dim W$ and

$$[T]^{-1}_{B,C} = [T^{-1}]_{C,B}.$$
Inverse Linear Transformation

Theorem

Let $T : V \rightarrow W$ be an isomorphism. Then T^{-1} is also a linear transformation. In addition, if V is finite dimensional, $\dim V = \dim W$ and

$$[T]^{-1}_{B,C} = [T^{-1}]_{C,B}.$$
Theorem

Let \(T : V \rightarrow W \) be an isomorphism. Then \(T^{-1} \) is also a linear transformation.
In addition, if \(V \) is finite dimensional, \(\dim V = \dim W \) and

\[
[T]_{B,C}^{-1} = [T^{-1}]_{C,B}.
\]

\(T^{-1} \) is a linear transformation.

For \(w_1, w_2 \in W \), let \(v_1 = T^{-1}(w_1) \) and \(v_2 = T^{-1}(w_2) \). Then

\[
T(v_1 + cv_2) = T(v_1) + cT(v_2) = w_1 + cw_2
\]

\[\Rightarrow\]

\[
\underbrace{T^{-1}(w_1)} + c \underbrace{T^{-1}(w_2)} = T^{-1}(w_1 + cw_2)
\]
Proof.

If \(\dim V = n < \infty \), let \(B = \{v_1, v_2, \ldots, v_n\} \) be a basis of \(V \). Then

\[
R(T) = \text{Span}\{T(v_1), T(v_2), \ldots, T(v_n)\}.
\]

Since \(T \) is onto, \(R(T) = W \) and hence \(\dim W = m \leq n \). Let \(C = \{w_1, w_2, \ldots, w_m\} \) be a basis of \(W \). Then

\[
R(T^{-1}) = \text{Span}\{T^{-1}(w_1), T^{-1}(w_2), \ldots, T^{-1}(w_m)\}.
\]

Since \(T^{-1} \) is onto, \(R(T^{-1}) = V \) and hence \(\dim V = n \leq m \). So \(m = n \). Finally,

\[
T \circ T^{-1} = 1_W \Rightarrow [T]_{B,C} [T^{-1}]_{C,B} = [1_W]_{C,C} = I
\]

\[
\Rightarrow [T]_{B,C}^{-1} = [T^{-1}]_{C,B}
\]
Proof.

If $\dim V = n < \infty$, let $B = \{v_1, v_2, ..., v_n\}$ be a basis of V. Then

$$R(T) = \operatorname{Span}\{T(v_1), T(v_2), ..., T(v_n)\}.$$

Since T is onto, $R(T) = W$ and hence $\dim W = m \leq n$. Let $C = \{w_1, w_2, ..., w_m\}$ be a basis of W. Then

$$R(T^{-1}) = \operatorname{Span}\{T^{-1}(w_1), T^{-1}(w_2), ..., T^{-1}(w_m)\}.$$

Since T^{-1} is onto, $R(T^{-1}) = V$ and hence $\dim V = n \leq m$. So $m = n$. Finally,

$$T \circ T^{-1} = 1_W \Rightarrow [T]_{B,C}[T^{-1}]_{C,B} = [1_W]_{C,C} = I$$

$$\Rightarrow [T]_{B,C}^{-1} = [T^{-1}]_{C,B}$$
Proof.

If \(\dim V = n < \infty \), let \(B = \{v_1, v_2, ..., v_n\} \) be a basis of \(V \). Then

\[
R(T) = \text{Span}\{T(v_1), T(v_2), ..., T(v_n)\}.
\]

Since \(T \) is onto, \(R(T) = W \) and hence \(\dim W = m \leq n \). Let \(C = \{w_1, w_2, ..., w_m\} \) be a basis of \(W \). Then

\[
R(T^{-1}) = \text{Span}\{T^{-1}(w_1), T^{-1}(w_2), ..., T^{-1}(w_m)\}.
\]

Since \(T^{-1} \) is onto, \(R(T^{-1}) = V \) and hence \(\dim V = n \leq m \). So \(m = n \). Finally,

\[
T \circ T^{-1} = 1_W \Rightarrow [T]_{B,C}[T^{-1}]_{C,B} = [1_W]_{C,C} = I
\]

\[
\Rightarrow [T]_{B,C}^{-1} = [T^{-1}]_{C,B}
\]
Proof.

If \(\dim V = n < \infty \), let \(B = \{v_1, v_2, \ldots, v_n\} \) be a basis of \(V \). Then

\[
R(T) = \text{Span}\{T(v_1), T(v_2), \ldots, T(v_n)\}.
\]

Since \(T \) is onto, \(R(T) = W \) and hence \(\dim W = m \leq n \). Let \(C = \{w_1, w_2, \ldots, w_m\} \) be a basis of \(W \). Then

\[
R(T^{-1}) = \text{Span}\{T^{-1}(w_1), T^{-1}(w_2), \ldots, T^{-1}(w_m)\}.
\]

Since \(T^{-1} \) is onto, \(R(T^{-1}) = V \) and hence \(\dim V = n \leq m \). So \(m = n \). Finally,

\[
T \circ T^{-1} = 1_W \Rightarrow [T]_{B,C}[T^{-1}]_{C,B} = [1_W]_{C,C} = I
\]

\[
\Rightarrow [T]_{B,C}^{-1} = [T^{-1}]_{C,B}
\]
Proof.

If \(\dim V = n < \infty \), let \(B = \{v_1, v_2, ..., v_n\} \) be a basis of \(V \). Then

\[
R(T) = \text{Span}\{ T(v_1), T(v_2), ..., T(v_n) \}.
\]

Since \(T \) is onto, \(R(T) = W \) and hence \(\dim W = m \leq n \). Let \(C = \{w_1, w_2, ..., w_m\} \) be a basis of \(W \). Then

\[
R(T^{-1}) = \text{Span}\{ T^{-1}(w_1), T^{-1}(w_2), ..., T^{-1}(w_m) \}.
\]

Since \(T^{-1} \) is onto, \(R(T^{-1}) = V \) and hence \(\dim V = n \leq m \). So \(m = n \). Finally,

\[
T \circ T^{-1} = 1_W \Rightarrow [T]_{B,C}[T^{-1}]_{C,B} = [1_W]_{C,C} = I
\]

\[
\Rightarrow [T]^{-1}_{B,C} = [T^{-1}]_{C,B}
\]
Question

Given n points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, assuming that x_1, x_2, \ldots, x_n are distinct, find a polynomial $f(x)$ of degree $\leq n - 1$ such that the curve $y = f(x)$ passes through these n points, i.e. $f(x_k) = y_k$ for $k = 1, 2, \ldots, n$.

Let $f(x) = a_1 + a_2x + \ldots + a_nx^{n-1}$. Then it comes down to solve

$$
\begin{align*}
&f(x_1) = y_1 \\
f(x_2) = y_2 \\
&\vdots \\
f(x_n) = y_n
\end{align*}
\iff
\begin{bmatrix}
1 & x_1 & \ldots & x_1^{n-1} \\
1 & x_2 & \ldots & x_2^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_n & \ldots & x_n^{n-1}
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2 \\
\vdots \\
a_n
\end{bmatrix}
=
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}
$$

Xi Chen
Linear Algebra II Lecture 13
Interpolation Problem

Question

Given n points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, assuming that x_1, x_2, \ldots, x_n are distinct, find a polynomial $f(x)$ of degree $\leq n - 1$ such that the curve $y = f(x)$ passes through these n points, i.e. $f(x_k) = y_k$ for $k = 1, 2, \ldots, n$.

Let $f(x) = a_1 + a_2 x + \ldots + a_n x^{n-1}$. Then it comes down to solve

$$
\begin{align*}
\begin{cases}
f(x_1) = y_1 \\
f(x_2) = y_2 \\
\vdots \\
f(x_n) = y_n
\end{cases} &\iff
\begin{bmatrix} 1 & x_1 & \ldots & x_1^{n-1} \\
1 & x_2 & \ldots & x_2^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_n & \ldots & x_n^{n-1} \end{bmatrix}
\begin{bmatrix} a_1 \\
a_2 \\
\vdots \\
a_n \end{bmatrix} =
\begin{bmatrix} y_1 \\
y_2 \\
\vdots \\
y_n \end{bmatrix}
\end{align*}
$$
Interpolation Problem

Question

Given \(n \) points \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\), assuming that \(x_1, x_2, \ldots, x_n \) are distinct, find a polynomial \(f(x) \) of degree \(\leq n - 1 \) such that the curve \(y = f(x) \) passes through these \(n \) points, i.e. \(f(x_k) = y_k \) for \(k = 1, 2, \ldots, n \).

Let \(f(x) = a_1 + a_2 x + \ldots + a_n x^{n-1} \). Then it comes down to solve

\[
\begin{align*}
 f(x_1) &= y_1 \\
 f(x_2) &= y_2 \\
 \vdots & \quad \vdots \\
 f(x_n) &= y_n \\
\end{align*}
\]

\[
\begin{bmatrix}
 1 & x_1 & \ldots & x_1^{n-1} \\
 1 & x_2 & \ldots & x_2^{n-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 1 & x_n & \ldots & x_n^{n-1} \\
\end{bmatrix}
\begin{bmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_n \\
\end{bmatrix}
=
\begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n \\
\end{bmatrix}
\]
An Approach Using Linear Transformation

Let $V = \{ f(x) \in \mathbb{R}[x] : \deg f(x) \leq n - 1 \}$ and let $T : V \to \mathbb{R}^n$ be the linear transformation

$$T(f(x)) = (f(x_1), f(x_2), \ldots, f(x_n)).$$

Objective: find $f(x) \in V$ such that

$$T(f(x)) = (y_1, y_2, \ldots, y_n)$$

or equivalently, find

$$T^{-1}(y_1, y_2, \ldots, y_n).$$

It suffices to find $T^{-1}(e_k)$ since

$$T^{-1}(y_1, y_2, \ldots, y_n) = y_1 T^{-1}(e_1) + y_2 T^{-1}(e_2) + \ldots + y_n T^{-1}(e_n).$$
An Approach Using Linear Transformation

Let $V = \{ f(x) \in \mathbb{R}[x] : \deg f(x) \leq n - 1 \}$ and let $T : V \rightarrow \mathbb{R}^n$ be the linear transformation

$$T(f(x)) = (f(x_1), f(x_2), \ldots, f(x_n)).$$

Objective: find $f(x) \in V$ such that

$$T(f(x)) = (y_1, y_2, \ldots, y_n)$$

or equivalently, find

$$T^{-1}(y_1, y_2, \ldots, y_n).$$

It suffices to find $T^{-1}(e_k)$ since

$$T^{-1}(y_1, y_2, \ldots, y_n) = y_1 T^{-1}(e_1) + y_2 T^{-1}(e_2) + \ldots + y_n T^{-1}(e_n).$$
Let $V = \{ f(x) \in \mathbb{R}[x] : \deg f(x) \leq n - 1 \}$ and let $T : V \rightarrow \mathbb{R}^n$ be the linear transformation

$$T(f(x)) = (f(x_1), f(x_2), \ldots, f(x_n)).$$

Objective: find $f(x) \in V$ such that

$$T(f(x)) = (y_1, y_2, \ldots, y_n)$$

or equivalently, find

$$T^{-1}(y_1, y_2, \ldots, y_n).$$

It suffices to find $T^{-1}(e_k)$ since

$$T^{-1}(y_1, y_2, \ldots, y_n) = y_1 T^{-1}(e_1) + y_2 T^{-1}(e_2) + \ldots + y_n T^{-1}(e_n).$$
An Approach Using Linear Transformation

Let $V = \{ f(x) \in \mathbb{R}[x] : \deg f(x) \leq n - 1 \}$ and let $T : V \to \mathbb{R}^n$ be the linear transformation

$$T(f(x)) = (f(x_1), f(x_2), ..., f(x_n)).$$

Objective: find $f(x) \in V$ such that

$$T(f(x)) = (y_1, y_2, ..., y_n)$$

or equivalently, find

$$T^{-1}(y_1, y_2, ..., y_n).$$

It suffices to find $T^{-1}(e_k)$ since

$$T^{-1}(y_1, y_2, ..., y_n) = y_1 T^{-1}(e_1) + y_2 T^{-1}(e_2) + ... + y_n T^{-1}(e_n).$$
Find $T^{-1}(e_k)$

Let $f_k(x) = T^{-1}(e_k)$. Then $T(f_k(x)) = e_k$, i.e.,

$$T(f_k(x)) = (f_k(x_1), f_k(x_2), ..., f_k(x_n)) = e_k$$

$$\Rightarrow f_k(x_k) = 1 \text{ and } f_k(x_i) = 0 \text{ for } i \neq k$$

$$\Rightarrow f_k(x_1) = f_k(x_2) = ... = f_k(x_{k-1}) = f_k(x_{k+1}) = ... = f_k(x_n) = 0$$

$$f(x) = c(x - x_1)(x - x_2)...(x - x_{k-1})(x - x_{k+1})...(x - x_n)$$

$$\Rightarrow \quad = c \prod_{i \neq k}(x - x_i)$$

for some $c \in \mathbb{R}$.
Find $T^{-1}(e_k)$

Let $f_k(x) = T^{-1}(e_k)$. Then $T(f_k(x)) = e_k$, i.e.,

$$T(f_k(x)) = (f_k(x_1), f_k(x_2), \ldots, f_k(x_n)) = e_k$$

$\Rightarrow f_k(x_k) = 1$ and $f_k(x_i) = 0$ for $i \neq k$

$\Rightarrow f_k(x_1) = f_k(x_2) = \ldots = f_k(x_{k-1}) = f_k(x_{k+1}) = \ldots = f_k(x_n) = 0$

$$f(x) = c(x - x_1)(x - x_2)\ldots(x - x_{k-1})(x - x_{k+1})\ldots(x - x_n)$$

$\Rightarrow \quad = c \prod_{i \neq k}(x - x_i)$

for some $c \in \mathbb{R}$.
Find $T^{-1}(e_k)$

Let $f_k(x) = T^{-1}(e_k)$. Then $T(f_k(x)) = e_k$, i.e.,

$$T(f_k(x)) = (f_k(x_1), f_k(x_2), ..., f_k(x_n)) = e_k$$

$\Rightarrow f_k(x_k) = 1$ and $f_k(x_i) = 0$ for $i \neq k$

$\Rightarrow f_k(x_1) = f_k(x_2) = ... = f_k(x_{k-1}) = f_k(x_{k+1}) = ... = f_k(x_n) = 0$

$$f(x) = c(x - x_1)(x - x_2)...(x - x_{k-1})(x - x_{k+1})...(x - x_n)$$

$\Rightarrow c \prod_{i \neq k} (x - x_i)$

for some $c \in \mathbb{R}$.
Find $T^{-1}(\mathbf{e}_k)$

Let $f_k(x) = T^{-1}(\mathbf{e}_k)$. Then $T(f_k(x)) = \mathbf{e}_k$, i.e.,

$$T(f_k(x)) = (f_k(x_1), f_k(x_2), \ldots, f_k(x_n)) = \mathbf{e}_k$$

$$\Rightarrow f_k(x_k) = 1 \text{ and } f_k(x_i) = 0 \text{ for } i \neq k$$

$$\Rightarrow f_k(x_1) = f_k(x_2) = \ldots = f_k(x_{k-1}) = f_k(x_{k+1}) = \ldots = f_k(x_n) = 0$$

$$f(x) = c(x - x_1)(x - x_2)\ldots(x - x_{k-1})(x - x_{k+1})\ldots(x - x_n)$$

$$\Rightarrow \quad = c \prod_{i \neq k} (x - x_i)$$

for some $c \in \mathbb{R}$.

Find $T^{-1}(e_k)$

Let $f_k(x) = T^{-1}(e_k)$. Then $T(f_k(x)) = e_k$, i.e.,

$$T(f_k(x)) = (f_k(x_1), f_k(x_2), \ldots, f_k(x_n)) = e_k$$

$\Rightarrow f_k(x_k) = 1$ and $f_k(x_i) = 0$ for $i \neq k$

$\Rightarrow f_k(x_1) = f_k(x_2) = \ldots = f_k(x_{k-1}) = f_k(x_{k+1}) = \ldots = f_k(x_n) = 0$

$$f(x) = c(x - x_1)(x - x_2)\ldots(x - x_{k-1})(x - x_{k+1})\ldots(x - x_n)$$

$\Rightarrow \quad = c \prod_{i \neq k} (x - x_i)$

for some $c \in \mathbb{R}$.
Find c

\[f_k(x_k) = 1 \Rightarrow c \prod_{i \neq k} (x_k - x_i) = 1 \Rightarrow c = \prod_{i \neq k} (x_k - x_i)^{-1} \]

\[f_k(x) = \prod_{i \neq k} \frac{x - x_i}{x_k - x_i} \]

\[= \frac{(x - x_1)(x - x_2)\ldots(x - x_{k-1})(x - x_{k+1})\ldots(x - x_n)}{(x_k - x_1)(x_k - x_2)\ldots(x_k - x_{k-1})(x_k - x_{k+1})\ldots(x_k - x_n)} \]

for $k = 1, 2, \ldots, n$. Finally,

\[T^{-1}(y_1, y_2, \ldots, y_n) = y_1 f_1(x) + y_2 f_2(x) + \ldots + y_n f_n(x) \]

where the RHS is called the Lagrange interpolating polynomial passing through $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.
Find c

\[
f_k(x_k) = 1 \Rightarrow c \prod_{i \neq k}(x_k - x_i) = 1 \Rightarrow c = \prod_{i \neq k}(x_k - x_i)^{-1}
\]

\[
f_k(x) = \prod_{i \neq k} \frac{x - x_i}{x_k - x_i}
\]

\[
\Rightarrow \frac{(x - x_1)(x - x_2)\ldots(x - x_{k-1})(x - x_{k+1})\ldots(x - x_n)}{(x_k - x_1)(x_k - x_2)\ldots(x_k - x_{k-1})(x_k - x_{k+1})\ldots(x_k - x_n)}
\]

for $k = 1, 2, \ldots, n$. Finally,

\[
T^{-1}(y_1, y_2, \ldots, y_n) = y_1 f_1(x) + y_2 f_2(x) + \ldots + y_n f_n(x)
\]

where the RHS is called the Lagrange interpolating polynomial passing through $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.
Find c

$$f_k(x_k) = 1 \Rightarrow c \prod_{i \neq k} (x_k - x_i) = 1 \Rightarrow c = \prod_{i \neq k} (x_k - x_i)^{-1}$$

$$f_k(x) = \prod_{i \neq k} \frac{x - x_i}{x_k - x_i}$$

$$\Rightarrow \quad \frac{(x - x_1)(x - x_2) \ldots (x - x_{k-1})(x - x_{k+1}) \ldots (x - x_n)}{(x_k - x_1)(x_k - x_2) \ldots (x_k - x_{k-1})(x_k - x_{k+1}) \ldots (x_k - x_n)}$$

for $k = 1, 2, \ldots, n$. Finally,

$$T^{-1}(y_1, y_2, \ldots, y_n) = y_1 f_1(x) + y_2 f_2(x) + \ldots + y_n f_n(x)$$

where the RHS is called the *Lagrange interpolating polynomial* passing through $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.