Linear Algebra II Lecture 12

Xi Chen

1University of Alberta

February 3, 2014
Outline

1. Kernel as Null Space and Range as Column Space

2. Injection, Surjection and Isomorphism
Recall that $K(T) = \{ \mathbf{v} : T(\mathbf{v}) = 0 \}$. If T is represented by a matrix $A = [T]$, then $T(\mathbf{v}) = A\mathbf{v}$, roughly. So

$$K(T) = \text{Nul}(A).$$

Recall that $R(T) = T(V) = \{ T(\mathbf{v}) : \mathbf{v} \in V \}$ and hence

$$R(T) = \text{Span}\{ T(\mathbf{v}) : \mathbf{v} \in B \}$$

for a basis B. If T is represented by a matrix $A = [T]$, then

$$R(T) = \text{Col}(A).$$
Recall that $K(T) = \{ \mathbf{v} : T(\mathbf{v}) = 0 \}$. If T is represented by a matrix $A = [T]$, then $T(\mathbf{v}) = A\mathbf{v}$, roughly. So

$$K(T) = \text{Nul}(A).$$

Recall that $R(T) = T(V) = \{ T(\mathbf{v}) : \mathbf{v} \in V \}$ and hence

$$R(T) = \text{Span}\{T(\mathbf{v}) : \mathbf{v} \in B\}$$

for a basis B. If T is represented by a matrix $A = [T]$, then

$$R(T) = \text{Col}(A).$$
$K(T) = \text{Nul}([T])$ and $R(T) = \text{Col}([T])$

Recall that $K(T) = \{ v : T(v) = 0 \}$. If T is represented by a matrix $A = [T]$, then $T(v) = Av$, roughly. So

$$K(T) = \text{Nul}(A).$$

Recall that $R(T) = T(V) = \{ T(v) : v \in V \}$ and hence

$$R(T) = \text{Span}\{ T(v) : v \in B \}$$

for a basis B. If T is represented by a matrix $A = [T]$, then

$$R(T) = \text{Col}(A).$$
Recall that $K(T) = \{ \mathbf{v} : T(\mathbf{v}) = 0 \}$. If T is represented by a matrix $A = [T]$, then $T(\mathbf{v}) = A\mathbf{v}$, roughly. So

$$K(T) = \text{Nul}(A).$$

Recall that $R(T) = T(V) = \{ T(\mathbf{v}) : \mathbf{v} \in V \}$ and hence

$$R(T) = \text{Span}\{ T(\mathbf{v}) : \mathbf{v} \in B \}$$

for a basis B. If T is represented by a matrix $A = [T]$, then

$$R(T) = \text{Col}(A).$$
$K(T) = \text{Nul}([T])$ and $R(T) = \text{Col}([T])$

Recall that $K(T) = \{ v : T(v) = 0 \}$. If T is represented by a matrix $A = [T]$, then $T(v) = Av$, roughly. So

$$K(T) = \text{Nul}(A).$$

Recall that $R(T) = T(V) = \{ T(v) : v \in V \}$ and hence

$$R(T) = \text{Span}\{ T(v) : v \in B \}$$

for a basis B. If T is represented by a matrix $A = [T]$, then

$$R(T) = \text{Col}(A).$$
Given a vector space V and an ordered basis $B = \{v_1, v_2, \ldots, v_n\}$ of V, every v can be expressed as a linear combination of B in a unique way

$$v = x_1v_1 + x_2v_2 + \ldots + x_nv_n$$

Then we write

$$[v]_B = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ and } v = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}^B$$

In other words, $[]_B : V \to \mathbb{R}^n$ is the map sending v_i to e_i and $[]^B : \mathbb{R}^n \to V$ is its inverse.
Given a vector space V and an ordered basis $B = \{ \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \}$ of V, every \mathbf{v} can expressed as a linear combination of B in a unique way

$$\mathbf{v} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \ldots + x_n \mathbf{v}_n$$

Then we write

$$[\mathbf{v}]_B = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}^B$$

In other words, $[\cdot]_B : V \rightarrow \mathbb{R}^n$ is the map sending \mathbf{v}_i to \mathbf{e}_i and $[\cdot]^B : \mathbb{R}^n \rightarrow V$ is its inverse.
Given a vector space V and an ordered basis $B = \{v_1, v_2, \ldots, v_n\}$ of V, every v can expressed as a linear combination of B in a unique way

$$v = x_1v_1 + x_2v_2 + \ldots + x_nv_n$$

Then we write

$$[v]_B = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \text{and} \quad v = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}^B$$

In other words, $[\cdot]_B : V \to \mathbb{R}^n$ is the map sending v_i to e_i and $[]^B : \mathbb{R}^n \to V$ is its inverse.
For example, let \(B = \{ \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \} \) be a basis in \(\mathbb{R}^n \). Then

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}_B = A^{-1} \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
\]

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}_B = A \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
\]

where \(A = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \ldots & \mathbf{v}_n \end{bmatrix} \) is the matrix with column vectors \(\mathbf{v}_k \).
For example, let $B = \{v_1, v_2, \ldots, v_n\}$ be a basis in \mathbb{R}^n. Then

$$
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n \\
\end{bmatrix}_B = A^{-1}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n \\
\end{bmatrix}
$$

$$
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n \\
\end{bmatrix}_B = A
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n \\
\end{bmatrix}
$$

where $A = \begin{bmatrix} v_1 & v_2 & \ldots & v_n \end{bmatrix}$ is the matrix with column vectors v_k.
For example, let $B = \{v_1, v_2, \ldots, v_n\}$ be a basis in \mathbb{R}^n. Then

$$
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}_B = A^{-1}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}
$$

$$
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}_B = A
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}
$$

where $A = \begin{bmatrix} v_1 & v_2 & \ldots & v_n \end{bmatrix}$ is the matrix with column vectors v_k.
Let $B = \{(1, 2), (2, 3)\}$ in \mathbb{R}^2. Then

$$
\begin{bmatrix}
1 \\
1
\end{bmatrix}_B = \begin{bmatrix}
1 & 2 \\
2 & 3
\end{bmatrix}^{-1} \begin{bmatrix}
1 \\
1
\end{bmatrix} = \begin{bmatrix}
-3 & 2 \\
2 & -1
\end{bmatrix} \begin{bmatrix}
1 \\
1
\end{bmatrix} = \begin{bmatrix}
-1 \\
1
\end{bmatrix}
$$

i.e., $(1, 1) = -(1, 2) + (2, 3)$. On the other hand,

$$
\begin{bmatrix}
-1 \\
1
\end{bmatrix}^B = \begin{bmatrix}
1 & 2 \\
2 & 3
\end{bmatrix} \begin{bmatrix}
-1 \\
1
\end{bmatrix} = \begin{bmatrix}
1 \\
1
\end{bmatrix}
$$
Let \(B = \{(1, 2), (2, 3)\} \) in \(\mathbb{R}^2 \). Then

\[
\begin{bmatrix}
1 \\
1
\end{bmatrix}_B =
\begin{bmatrix}
1 & 2 \\
2 & 3
\end{bmatrix}^{-1}
\begin{bmatrix}
1 \\
1
\end{bmatrix} =
\begin{bmatrix}
-3 & 2 \\
2 & -1
\end{bmatrix}
\begin{bmatrix}
1
\end{bmatrix} =
\begin{bmatrix}
-1
\end{bmatrix}
\]

i.e., \((1, 1) = -(1, 2) + (2, 3)\). On the other hand,

\[
\begin{bmatrix}
-1 \\
1
\end{bmatrix}^B =
\begin{bmatrix}
1 & 2 \\
2 & 3
\end{bmatrix}
\begin{bmatrix}
-1 \\
1
\end{bmatrix} =
\begin{bmatrix}
1
\end{bmatrix}
\]
Theorem

Let \(T : V \rightarrow W \) be a linear transformation between two vector spaces of finite dimensions and let \([T] = [T]_{B,C}\) be the matrix representing \(T \) under the bases \(B \) and \(C \) of \(V \) and \(W \), respectively. Then \(\mathbf{v} \in K(T) \) if and only if \([\mathbf{v}]_B \in \text{Nul}([T])\). That is, \(K(T) = \left[\text{Nul}([T]) \right]^B \).

Proof.

Since

\[
T(\mathbf{v}) = \left[[T]_{B,C} [\mathbf{v}]_B \right]^C
\]

\[
T(\mathbf{v}) = 0 \iff [T][\mathbf{v}]_B = 0 \iff [\mathbf{v}]_B \in \text{Nul}([T]).
\]
Theorem

Let $T : V \rightarrow W$ be a linear transformation between two vector spaces of finite dimensions and let $[T] = [T]_{B,C}$ be the matrix representing T under the bases B and C of V and W, respectively. Then $v \in K(T)$ if and only if $[v]_B \in \text{Nul}([T])$. That is, $K(T) = [\text{Nul}([T])]_B$.

Proof.

Since

$$T(v) = [T]_{B,C}[v]_B^C$$

$$T(v) = 0 \iff [T][v]_B = 0 \iff [v]_B \in \text{Nul}([T]).$$
Theorem

Let $T : V \to W$ be a linear transformation between two vector spaces of finite dimensions and let $[T] = [T]_{B,C}$ be the matrix representing T under the bases B and C of V and W, respectively. Then $v \in K(T)$ if and only if $[v]_B \in \text{Nul}([T])$. That is, $K(T) = \left[\text{Nul}([T]) \right]^B$.

Proof.

Since

$$T(v) = \left[[T]_{B,C} [v]_B \right]_C$$

$$T(v) = 0 \iff [T][v]_B = 0 \iff [v]_B \in \text{Nul}([T]).$$
Theorem

Let $T : V \rightarrow W$ be a linear transformation between two vector spaces of finite dimensions and let $[T] = [T]_{B,C}$ be the matrix representing T under the bases B and C of V and W, respectively. Then $w \in R(T)$ if and only if $[w]_C \in \text{Col}([T])$. That is, $R(T) = [\text{Col}([T])]^C$.

Proof.

Let $B = \{v_1, v_2, ..., v_n\}$. Then

\[w \in R(T) \iff w \in \text{Span}\{T(v_1), T(v_2), ..., T(v_n)\} \]
\[\iff [w]_C \in \text{Span}\{[T(v_1)]_C, [T(v_2)]_C, ..., [T(v_n)]_C\} \]
Theorem

Let $T : V \to W$ be a linear transformation between two vector spaces of finite dimensions and let $[T] = [T]_{B,C}$ be the matrix representing T under the bases B and C of V and W, respectively. Then $w \in R(T)$ if and only if $[w]_C \in \text{Col}([T])$. That is, $R(T) = \left[\text{Col}([T]) \right]^C$.

Proof.

Let $B = \{v_1, v_2, ..., v_n\}$. Then

$$w \in R(T) \iff w \in \text{Span}\{T(v_1), T(v_2), ..., T(v_n)\}$$

$$\iff [w]_C \in \text{Span}\{[T(v_1)]_C, [T(v_2)]_C, ..., [T(v_n)]_C\}$$
Example of $K(T) = \text{Nul}([T])$ and $R(T) = \text{Col}([T])$

Let $V = \{f(x) \in \mathbb{R}[x] : \text{deg } f(x) \leq n\}$ and T be the map given by

$$T(f(x)) = f'(x).$$

Let $B = \{1, x, ..., x^n\}$. Then

$$A = [T] = [T]_{B,B} = \begin{bmatrix} 0 & 1 & 0 & 2 & \cdots & \cdots & 0 \\ 0 & 0 & 2 & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & n \end{bmatrix}$$
Example of $K(T) = \text{Nul}([T])$ and $R(T) = \text{Col}([T])$

Let $V = \{f(x) \in \mathbb{R}[x] : \deg f(x) \leq n\}$ and T be the map given by

$$T(f(x)) = f'(x).$$

Let $B = \{1, x, \ldots, x^n\}$. Then

$$A = [T] = [T]_{B,B} = \begin{bmatrix} 0 & 1 \\ 0 & 2 \\ \vdots & \vdots \\ 0 & n \\ 0 & 0 \end{bmatrix}$$
Example of $K(T) = \text{Nul}([T])$ and $R(T) = \text{Col}([T])$

Let $V = \{ f(x) \in \mathbb{R}[x] : \text{deg } f(x) \leq n \}$ and T be the map given by

$$T(f(x)) = f'(x).$$

Let $B = \{1, x, \ldots, x^n\}$. Then

$$A = [T] = [T]_{B,B} = \begin{bmatrix} 0 & 1 & & \\ 0 & 2 & & \\ & & \ddots & \ddots \\ & & & 0 & n \end{bmatrix}$$
We know that

\[K(T) = \{ f(x) : f'(x) \equiv 0 \} = \{ c \in \mathbb{R} \} = \text{Span}\{1\}. \]

On the other hand,

\[K(T) = [\text{Nul}(A)]^B = [\text{Span}\{e_1\}]^B = \text{Span}\{[e_1]^B\} = \text{Span}\{1\}. \]

For every polynomial \(f(x) \) of degree \(\leq n - 1 \), there exists \(F(x) \in V \) such that

\[F'(x) = f(x). \]

Therefore,

\[R(T) = \{ f(x) \in \mathbb{R}[x] : \deg f(x) \leq n - 1 \} = \text{Span}\{1, x, \ldots, x^{n-1}\}. \]
We know that

\[K(T) = \{ f(x) : f'(x) \equiv 0 \} = \{ c \in \mathbb{R} \} = \text{Span}\{1\}. \]

On the other hand,

\[K(T) = [\text{Nul}(A)]^B = [\text{Span}\{e_1\}]^B = \text{Span}\{[e_1]^B\} = \text{Span}\{1\}. \]

For every polynomial \(f(x) \) of degree \(\leq n - 1 \), there exists \(F(x) \in V \) such that

\[F'(x) = f(x). \]

Therefore,

\[R(T) = \{ f(x) \in \mathbb{R}[x] : \deg f(x) \leq n - 1 \} = \text{Span}\{1, x, ..., x^{n-1}\}. \]
Example of $K(T) = \text{Nul}([T])$ and $R(T) = \text{Col}([T])$

We know that

$$K(T) = \{ f(x) : f'(x) \equiv 0 \} = \{ c \in \mathbb{R} \} = \text{Span}\{1\}.$$

On the other hand,

$$K(T) = \left[\text{Nul}(A) \right]^B = \left[\text{Span}\{e_1\} \right]^B = \text{Span}\{[e_1]^B\} = \text{Span}\{1\}.$$

For every polynomial $f(x)$ of degree $\leq n - 1$, there exists $F(x) \in V$ such that

$$F'(x) = f(x).$$

Therefore,

$$R(T) = \{ f(x) \in \mathbb{R}[x] : \text{deg } f(x) \leq n - 1 \} = \text{Span}\{1, x, ..., x^{n-1}\}.$$
Example of $K(T) = \text{Nul}([T])$ and $R(T) = \text{Col}([T])$

We know that

$$K(T) = \{ f(x) : f'(x) \equiv 0 \} = \{ c \in \mathbb{R} \} = \text{Span}\{1\}.$$

On the other hand,

$$K(T) = [\text{Nul}(A)]^B = [\text{Span}\{e_1\}]^B = \text{Span}\{[e_1]^B\} = \text{Span}\{1\}.$$

For every polynomial $f(x)$ of degree $\leq n - 1$, there exists $F(x) \in V$ such that

$$F'(x) = f(x).$$

Therefore,

$$R(T) = \{ f(x) \in \mathbb{R}[x] : \deg f(x) \leq n - 1 \} = \text{Span}\{1, x, \ldots, x^{n-1}\}.$$
Example of $K(T) = \text{Nul}([T])$ and $R(T) = \text{Col}([T])$

On the other hand,

$$R(T) = [\text{Col}(A)]^B = [\text{Span}\{0, e_1, 2e_2, \ldots, ne_n\}]^B$$

$$= \text{Span}\{[e_1]^B, [e_2]^B, \ldots, [e_n]^B\}$$

$$= \text{Span}\{1, x, \ldots, x^{n-1}\}$$
Definition of Injection, Surjection and Bijection

We call a map \(f : X \to Y \) an injection (injective, one-to-one, 1-1) if \(f(x_1) \neq f(x_2) \) for all \(x_1 \neq x_2 \in X \).

We call a map \(f : X \to Y \) a surjection (surjective, onto) if \(f(X) = Y \), i.e., for every \(y \in Y \), there exists \(x \in X \) such that \(f(x) = y \).

We call a map \(f : X \to Y \) a bijection (bijective) if it is 1-1 and onto. A bijection \(f : X \to Y \) has an inverse \(f^{-1} : Y \to X \) such that \(f \circ f^{-1} = 1_Y \) and \(f^{-1} \circ f = 1_X \), where \(1_X \) and \(1_Y \) are the identity maps on \(X \) and \(Y \).

Isomorphism

A linear transformation \(T : V \to W \) is an isomorphism if it is an bijection. Two vector spaces are isomorphic (written as \(V \cong W \)) if there is an isomorphism \(T : V \to W \).
Definition

Definition of Injection, Surjection and Bijection

We call a map $f : X \rightarrow Y$ an injection (injective, one-to-one, 1-1) if $f(x_1) \neq f(x_2)$ for all $x_1 \neq x_2 \in X$.

We call a map $f : X \rightarrow Y$ a surjection (surjective, onto) if $f(X) = Y$, i.e., for every $y \in Y$, there exists $x \in X$ such that $f(x) = y$.

We call a map $f : X \rightarrow Y$ a bijection (bijective) if it is 1-1 and onto. A bijection $f : X \rightarrow Y$ has an inverse $f^{-1} : Y \rightarrow X$ such that $f \circ f^{-1} = 1_Y$ and $f^{-1} \circ f = 1_X$, where 1_X and 1_Y are the identity maps on X and Y.

Isomorphism

A linear transformation $T : V \rightarrow W$ is an isomorphism if it is an bijection. Two vector spaces are isomorphic (written as $V \cong W$) if there is an isomorphism $T : V \rightarrow W$.
Definition

Definition of Injection, Surjection and Bijection

We call a map \(f : X \rightarrow Y \) an **injection** (*injective, one-to-one, 1-1*) if \(f(x_1) \neq f(x_2) \) for all \(x_1 \neq x_2 \in X \).

We call a map \(f : X \rightarrow Y \) a **surjection** (*surjective, onto*) if \(f(X) = Y \), i.e., for every \(y \in Y \), there exists \(x \in X \) such that \(f(x) = y \).

We call a map \(f : X \rightarrow Y \) a **bijection** (*bijective*) if it is 1-1 and onto. A bijection \(f : X \rightarrow Y \) has an **inverse** \(f^{-1} : Y \rightarrow X \) such that \(f \circ f^{-1} = 1_Y \) and \(f^{-1} \circ f = 1_X \), where \(1_X \) and \(1_Y \) are the identity maps on \(X \) and \(Y \).

Isomorphism

A linear transformation \(T : V \rightarrow W \) is an **isomorphism** if it is an bijection. Two vector spaces are isomorphic (written as \(V \cong W \)) if there is an isomorphism \(T : V \rightarrow W \).
Definition of Injection, Surjection and Bijection

We call a map \(f : X \to Y \) an injection (injective, one-to-one, 1-1) if \(f(x_1) \neq f(x_2) \) for all \(x_1 \neq x_2 \in X \).

We call a map \(f : X \to Y \) a surjection (surjective, onto) if \(f(X) = Y \), i.e., for every \(y \in Y \), there exists \(x \in X \) such that \(f(x) = y \).

We call a map \(f : X \to Y \) a bijection (bijective) if it is 1-1 and onto. A bijection \(f : X \to Y \) has an inverse \(f^{-1} : Y \to X \) such that \(f \circ f^{-1} = 1_Y \) and \(f^{-1} \circ f = 1_X \), where \(1_X \) and \(1_Y \) are the identity maps on \(X \) and \(Y \).

Isomorphism

A linear transformation \(T : V \to W \) is an isomorphism if it is an bijection. Two vector spaces are isomorphic (written as \(V \cong W \)) if there is an isomorphism \(T : V \to W \).
Definition of Injection, Surjection and Bijection

We call a map \(f : X \to Y \) an injection (injective, one-to-one, 1-1) if \(f(x_1) \neq f(x_2) \) for all \(x_1 \neq x_2 \in X \).

We call a map \(f : X \to Y \) a surjection (surjective, onto) if \(f(X) = Y \), i.e., for every \(y \in Y \), there exists \(x \in X \) such that \(f(x) = y \).

We call a map \(f : X \to Y \) a bijection (bijective) if it is 1-1 and onto. A bijection \(f : X \to Y \) has an inverse \(f^{-1} : Y \to X \) such that \(f \circ f^{-1} = 1_Y \) and \(f^{-1} \circ f = 1_X \), where \(1_X \) and \(1_Y \) are the identity maps on \(X \) and \(Y \).

Isomorphism

A linear transformation \(T : V \to W \) is an isomorphism if it is an bijection. Two vector spaces are isomorphic (written as \(V \cong W \)) if there is an isomorphism \(T : V \to W \).
Theorem

Let $T : V \to W$ be a linear transformation. Then

- T is 1-1 if and only if $K(T) = \{0\}$;
- T is onto if and only if $R(T) = W$.

Proof.

If T is 1-1, then $T(v) \neq T(0) = 0$ for all $v \neq 0$. Therefore, $v \notin K(T)$ for all $v \neq 0$. That is, $K(T) = \{0\}$.

Suppose that $K(T) = \{0\}$. If T is not 1-1, then there exists $v_1 \neq v_2$ such that $T(v_1) = T(v_2)$. Then

$$T(v_1 - v_2) = T(v_1) - T(v_2) = 0$$

and $v_1 - v_2 \neq 0 \in K(T)$. Contradiction.
Theorem

Let $T : V \rightarrow W$ be a linear transformation. Then

- T is 1-1 if and only if $\ker(T) = \{0\}$;
- T is onto if and only if $\text{im}(T) = W$.

Proof.

If T is 1-1, then $T(v) \neq T(0) = 0$ for all $v \neq 0$. Therefore, $v \notin \ker(T)$ for all $v \neq 0$. That is, $\ker(T) = \{0\}$.

Suppose that $\ker(T) = \{0\}$. If T is not 1-1, then there exists $v_1 \neq v_2$ such that $T(v_1) = T(v_2)$. Then

$$T(v_1 - v_2) = T(v_1) - T(v_2) = 0$$

and $v_1 - v_2 \neq 0 \in \ker(T)$. Contradiction.
Injective and Surjective Linear Transformations

Theorem

Let \(T : V \rightarrow W \) be a linear transformation. Then

- \(T \) is 1-1 if and only if \(K(T) = \{0\} \);
- \(T \) is onto if and only if \(R(T) = W \).

Proof.

If \(T \) is 1-1, then \(T(\mathbf{v}) \neq T(0) = 0 \) for all \(\mathbf{v} \neq 0 \). Therefore, \(\mathbf{v} \notin K(T) \) for all \(\mathbf{v} \neq 0 \). That is, \(K(T) = \{0\} \).

Suppose that \(K(T) = \{0\} \). If \(T \) is not 1-1, then there exists \(\mathbf{v}_1 \neq \mathbf{v}_2 \) such that \(T(\mathbf{v}_1) = T(\mathbf{v}_2) \). Then

\[
T(\mathbf{v}_1 - \mathbf{v}_2) = T(\mathbf{v}_1) - T(\mathbf{v}_2) = 0
\]

and \(\mathbf{v}_1 - \mathbf{v}_2 \neq 0 \in K(T) \). Contradiction.
Injective and Surjective Linear Transformations

Theorem

Let \(T : V \rightarrow W \) be a linear transformation. Then

- \(T \) is 1-1 if and only if \(K(T) = \{0\} \);
- \(T \) is onto if and only if \(R(T) = W \).

Proof.

If \(T \) is 1-1, then \(T(\mathbf{v}) \neq T(0) = 0 \) for all \(\mathbf{v} \neq 0 \). Therefore, \(\mathbf{v} \notin K(T) \) for all \(\mathbf{v} \neq 0 \). That is, \(K(T) = \{0\} \).

Suppose that \(K(T) = \{0\} \). If \(T \) is not 1-1, then there exists \(\mathbf{v}_1 \neq \mathbf{v}_2 \) such that \(T(\mathbf{v}_1) = T(\mathbf{v}_2) \). Then

\[
T(\mathbf{v}_1 - \mathbf{v}_2) = T(\mathbf{v}_1) - T(\mathbf{v}_2) = 0
\]

and \(\mathbf{v}_1 - \mathbf{v}_2 \neq 0 \in K(T) \). Contradiction.
Inverse Linear Transformation

Theorem

Let $T: V \rightarrow W$ be an isomorphism. Then T^{-1} is also a linear transformation.

In addition, if V is finite dimensional, $\dim V = \dim W$ and

$$[T]_{B,C}^{-1} = [T^{-1}]_{C,B}.$$

T^{-1} is a linear transformation.

For $w_1, w_2 \in W$, let $v_1 = T^{-1}(w_1)$ and $v_2 = T^{-1}(w_2)$. Then

$$T(v_1 + cv_2) = T(v_1) + cT(v_2) = w_1 + cw_2$$

$$\Rightarrow \quad \underbrace{v_1 + c}_{T^{-1}(w_1)} \underbrace{v_2}_{T^{-1}(w_2)} = T^{-1}(w_1 + cw_2)$$
Inverse Linear Transformation

Theorem

Let $T : V \rightarrow W$ be an isomorphism. Then T^{-1} is also a linear transformation.

In addition, if V is finite dimensional, $\dim V = \dim W$ and

$$[T]_{B,C}^{-1} = [T^{-1}]_{C,B}.$$

T^{-1} is a linear transformation.

For $w_1, w_2 \in W$, let $v_1 = T^{-1}(w_1)$ and $v_2 = T^{-1}(w_2)$. Then

$$T(v_1 + cv_2) = T(v_1) + cT(v_2) = w_1 + cw_2$$

$$\Rightarrow \frac{v_1}{T^{-1}(w_1)} + c \frac{v_2}{T^{-1}(w_2)} = T^{-1}(w_1 + cw_2)$$
Inverse Linear Transformation

Theorem

Let \(T : V \rightarrow W \) be an isomorphism. Then \(T^{-1} \) is also a linear transformation.

In addition, if \(V \) is finite dimensional, \(\dim V = \dim W \) and

\[
[T]^{-1}_{B,C} = [T^{-1}]_{C,B}.
\]

\(T^{-1} \) is a linear transformation.

For \(w_1, w_2 \in W \), let \(v_1 = T^{-1}(w_1) \) and \(v_2 = T^{-1}(w_2) \). Then

\[
T(v_1 + cv_2) = T(v_1) + cT(v_2) = w_1 + cw_2
\]

\[\Rightarrow \quad \underbrace{v_1}_{T^{-1}(w_1)} + c \underbrace{v_2}_{T^{-1}(w_2)} = T^{-1}(w_1 + cw_2)\]
Proof.

If \(\dim V = n < \infty \), let \(B = \{v_1, v_2, \ldots, v_n\} \) be a basis of \(V \). Then

\[
R(T) = \text{Span}\{T(v_1), T(v_2), \ldots, T(v_n)\}.
\]

Since \(T \) is onto, \(R(T) = W \) and hence \(\dim W = m \leq n \). Let \(C = \{w_1, w_2, \ldots, w_m\} \) be a basis of \(W \). Then

\[
R(T^{-1}) = \text{Span}\{T^{-1}(w_1), T^{-1}(w_2), \ldots, T^{-1}(w_m)\}.
\]

Since \(T^{-1} \) is onto, \(R(T^{-1}) = V \) and hence \(\dim V = n \leq m \). So \(m = n \). Finally,

\[
T \circ T^{-1} = 1_W \Rightarrow [T]_{B,C}[T^{-1}]_{C,B} = [1_W]_{C,C} = I
\]

\[
\Rightarrow [T]_{B,C}^{-1} = [T^{-1}]_{C,B}
\]
Proof.

If \(\dim V = n < \infty \), let \(B = \{v_1, v_2, \ldots, v_n\} \) be a basis of \(V \). Then

\[
R(T) = \text{Span}\{T(v_1), T(v_2), \ldots, T(v_n)\}.
\]

Since \(T \) is onto, \(R(T) = W \) and hence \(\dim W = m \leq n \). Let \(C = \{w_1, w_2, \ldots, w_m\} \) be a basis of \(W \). Then

\[
R(T^{-1}) = \text{Span}\{T^{-1}(w_1), T^{-1}(w_2), \ldots, T^{-1}(w_m)\}.
\]

Since \(T^{-1} \) is onto, \(R(T^{-1}) = V \) and hence \(\dim V = n \leq m \). So \(m = n \). Finally,

\[
T \circ T^{-1} = 1_W \Rightarrow \begin{bmatrix} T \end{bmatrix}_{B,C}[T^{-1}]_{C,B} = \begin{bmatrix} 1_W \end{bmatrix}_{C,C} = I
\Rightarrow \begin{bmatrix} T^{-1} \end{bmatrix}_{B,C} = [T^{-1}]_{C,B}
\]

Xi Chen

Linear Algebra II Lecture 12
Proof.

If \(\dim V = n < \infty \), let \(B = \{ \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n \} \) be a basis of \(V \). Then

\[
R(T) = \text{Span}\{ T(\mathbf{v}_1), T(\mathbf{v}_2), ..., T(\mathbf{v}_n) \}.
\]

Since \(T \) is onto, \(R(T) = W \) and hence \(\dim W = m \leq n \). Let \(C = \{ \mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_m \} \) be a basis of \(W \). Then

\[
R(T^{-1}) = \text{Span}\{ T^{-1}(\mathbf{w}_1), T^{-1}(\mathbf{w}_2), ..., T^{-1}(\mathbf{w}_m) \}.
\]

Since \(T^{-1} \) is onto, \(R(T^{-1}) = V \) and hence \(\dim V = n \leq m \). So \(m = n \). Finally,

\[
T \circ T^{-1} = 1_W \Rightarrow [T]_{B,C} [T^{-1}]_{C,B} = [1_W]_{C,C} = I
\]

\[
\Rightarrow [T]_{B,C}^{-1} = [T^{-1}]_{C,B}
\]
Proof.

If \(\dim V = n < \infty \), let \(B = \{v_1, v_2, \ldots, v_n\} \) be a basis of \(V \). Then

\[
R(T) = \text{Span}\{T(v_1), T(v_2), \ldots, T(v_n)\}.
\]

Since \(T \) is onto, \(R(T) = W \) and hence \(\dim W = m \leq n \). Let \(C = \{w_1, w_2, \ldots, w_m\} \) be a basis of \(W \). Then

\[
R(T^{-1}) = \text{Span}\{T^{-1}(w_1), T^{-1}(w_2), \ldots, T^{-1}(w_m)\}.
\]

Since \(T^{-1} \) is onto, \(R(T^{-1}) = V \) and hence \(\dim V = n \leq m \). So \(m = n \). Finally,

\[
T \circ T^{-1} = 1_W \Rightarrow [T]_{B,C}[T^{-1}]_{C,B} = [1_W]_{C,C} = I
\]

\[
\Rightarrow [T]^{-1}_{B,C} = [T^{-1}]_{C,B}
\]
Proof.

If \(\dim V = n < \infty \), let \(B = \{v_1, v_2, \ldots, v_n\} \) be a basis of \(V \). Then

\[
R(T) = \operatorname{Span}\{T(v_1), T(v_2), \ldots, T(v_n)\}.
\]

Since \(T \) is onto, \(R(T) = W \) and hence \(\dim W = m \leq n \). Let \(C = \{w_1, w_2, \ldots, w_m\} \) be a basis of \(W \). Then

\[
R(T^{-1}) = \operatorname{Span}\{T^{-1}(w_1), T^{-1}(w_2), \ldots, T^{-1}(w_m)\}.
\]

Since \(T^{-1} \) is onto, \(R(T^{-1}) = V \) and hence \(\dim V = n \leq m \). So \(m = n \). Finally,

\[
T \circ T^{-1} = 1_W \Rightarrow [T]_{B,C}[T^{-1}]_{C,B} = [1_W]_{C,C} = I
\]

\[
\Rightarrow [T]_{B,C}^{-1} = [T^{-1}]_{C,B}
\]