Outline

1. Subspace
2. Span
Definition of Subspace

Definition. A subset $W \subset V$ of a vector space V over \mathbb{R} is a subspace if $W \neq \emptyset$ and

- $w_1 + cw_2 \in W$ for all $w_1, w_2 \in W$ and all $c \in \mathbb{R}$.

Note that

- a subspace $W \subset V$ is itself a vector space;
- a subspace $W \subset V$ is never empty ($0 \in W$);
- $\{0\}$ and V are subspaces of V.
Intersections of Subspaces

Theorem

The intersection $V_1 \cap V_2$ of two subspaces V_1 and V_2 of V is also a subspace.

Proof.

For all $u, v \in V_1 \cap V_2$ and $c \in \mathbb{R}$,

\[
\begin{align*}
V_1 \text{ is a subspace} & \Rightarrow u + cv \in V_1 \\
V_2 \text{ is a subspace} & \Rightarrow u + cv \in V_2
\end{align*}
\]

\[\Rightarrow u + cv \in V_1 \cap V_2.\]

So $V_1 \cap V_2$ is a subspace of V. \qed
Examples of intersections of subspaces

Let A_1 and A_2 be two matrices of size $m_1 \times n$ and $m_2 \times n$, respectively. Let $N_{A_1} = \text{Nul}(A_1) = \{x : A_1x = 0\}$ and $N_{A_2} = \text{Nul}(A_2) = \{x : A_2x = 0\}$. Then

$$N_{A_1} \cap N_{A_2} = \left\{x : \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} x = 0 \right\}$$

e.g.,

$$\{(x, y) : 3x + 4y = 0\} \cap \{(x, y) : x + y = 0\} = \{(x, y) : 3x + 4y = x + y = 0\} = \{(0, 0)\}$$

$$\{(x, y, z) : x - y + z = 0\} \cap \{(x, y, z) : 3x + 4y + 5z = 0\} = \{(x, y, z) : x - y + z = 3x + 4y + 5z = 0\} = \left\{(x, y, z) : \begin{bmatrix} 1 & -1 & 1 \\ 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} = \{(-9t, -2t, 7t)\}$$
More examples of intersections

Let \(F(\mathbb{R}) = \{ f \mid f : \mathbb{R} \to \mathbb{R} \} \), \(E = \{ f \in F(\mathbb{R}) : f(−x) \equiv f(x) \} \) and \(O = \{ f \in F(\mathbb{R}) : f(−x) \equiv −f(x) \} \). Both \(E \) and \(O \) are subspaces of \(F(\mathbb{R}) \). Their intersection is

\[
E \cap O = \{ 0 \}.
\]

If \(f(x) \in E \cap O \), then \(f(−x) = f(x) \) and \(f(−x) = −f(x) \) for all \(x \Rightarrow f(x) \equiv −f(x) \), i.e., \(f(x) \equiv 0 \).

Let \(U = \{ A \in M_{n \times n}(\mathbb{R}) : A = A^T \} \) and \(V = \{ A \in M_{n \times n}(\mathbb{R}) : −A = A^T \} \). Then

\[
U \cap V = \{ 0 \}
\]

since \(A = A^T \) and \(−A = A^T \Rightarrow A = −A \Rightarrow A = 0 \).
Subspaces spanned by subsets

Theorem

The union $V_1 \cup V_2$ of two subspaces of V is not a subspace unless $V_1 \subset V_2$ or $V_2 \subset V_1$.

For example, let $V_1 = \{(x, y) : y = 0\}$ and $V_2 = \{(x, y) : x = 0\}$ and $V_1 \cup V_2$ is not a subspace of \mathbb{R}^2 since $v_1 = (1, 0) \in V_1$ and $v_2 = (0, 1) \in V_2$ but $v_1 + v_2 \not\in V_1 \cup V_2$. However, $\text{Span}(V_1 \cup V_2)$ is a subspace.

Definition

Let S be a subset of V. Then the span $\text{Span}(S)$ of S is the set consisting of

$$a_1 v_1 + a_2 v_2 + \ldots + a_n v_n$$

for all $v_1, v_2, \ldots, v_n \in S$ and $a_1, a_2, \ldots, a_n \in \mathbb{R}$, i.e., all linear combinations of vectors in S. Also set $\text{Span}(\emptyset) = \{0\}$.
Theorem

Span(S) is the smallest subspace of V containing S. That is, if W is a subspace of V and $S \subset W$, then $\text{Span}(S) \subset W$.

Proof that $\text{Span}(S)$ is a subspace.

For $u, v \in \text{Span}(S)$, let

$$u = a_1u_1 + a_2u_2 + \ldots + a_nu_n$$

and

$$v = b_1v_1 + b_2v_2 + \ldots + b_mv_m$$

for $a_i, b_j \in \mathbb{R}$ and $u_i, v_j \in S$. Then

$$u + cv = a_1u_1 + a_2u_2 + \ldots + a_nu_n$$

$$+ cb_1v_1 + cb_2v_2 + \ldots + cb_mv_m \in \text{Span}(S).$$
Proof that \(\text{Span}(S) \) is the smallest subspace containing \(S \).

Let \(W \subset V \) be a subspace with \(S \subset W \). Then

\[
a_1 u_1 + a_2 u_2 + \ldots + a_n u_n \in W
\]

for all \(a_1, a_2, \ldots, a_n \in \mathbb{R} \) and \(u_1, u_2, \ldots, u_n \in S \) since \(u_1, u_2, \ldots, u_n \in W \) and \(W \) is a subspace. So \(\text{Span}(S) \subset W \).

Or equivalently,

\[
\text{Span}(S) = \bigcap_{S \subset W} W
\]

Where \(W \subset V \) is a subspace.
Definition

The sum of two subspaces V_1 and V_2 of V is

$$V_1 + V_2 = \{ v_1 + v_2 : v_1 \in V_1, v_2 \in V_2 \}$$

Theorem

Let V_1 and V_2 be two subspaces of V. Then

$$V_1 + V_2 = \text{Span}(V_1 \cup V_2).$$

For example, let $V_1 = \{(x, y) : y = 0\}$ and $V_2 = \{(x, y) : x = 0\}$. Then

$$\text{Span}(V_1 \cup V_2) = V_1 + V_2 = \mathbb{R}^2.$$
Examples of \(\text{Span}(S) \)

- Let \(S = \{1, x, x^2, \ldots, x^n\} \subset \mathbb{R}[x] \). Then
 \[
 \text{Span}(S) = \{a_0 + a_1 x + \ldots + a_n x^n\} = \{f(x) : \deg f(x) \leq n\}
 \]

- Let \(S = \{x^2 + y^2 = 1\} \). Then \((1, 0) \in S\) and \((0, 1) \in S\) so
 \[
 \text{Span}(S) \supset \text{Span}\{(1, 0), (0, 1)\} = \mathbb{R}^2
 \]
 and hence \(\text{Span}(S) = \mathbb{R}^2 \).

Xi Chen
Linear Algebra II Lecture 3
Let $V_0 = \{ f(x) | f(0) = 0 \}$ and $V_1 = \{ f(x) | f(1) = 0 \}$ be subspaces of $F(\mathbb{R})$. Let

$$h(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x \neq 0 \end{cases}$$

Then for every $g(x) \in F(\mathbb{R})$,

$$g(x) = g(1)h(x) + (g(x) - g(1)h(x))$$

$$\in V_0 + (g(x) - g(1)h(x)) \in V_1$$

Therefore,

$$\text{Span}(V_0 \cup V_1) = V_0 + V_1 = F(\mathbb{R}).$$
Subspace Span

Span(S) for \(S \subset \mathbb{R}^n \)

Let \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \) be \(m \) vectors in \(\mathbb{R}^n \), represented by row vectors. Let \(A \) be the \(m \times n \) matrix

\[
A = \begin{bmatrix}
\mathbf{v}_1 \\
\mathbf{v}_2 \\
\vdots \\
\mathbf{v}_m
\end{bmatrix}.
\]

Then the *row space*

\[
\text{Row}(A) = \text{Span}(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m)
\]

the subspace of \(\mathbb{R}^n \) spanned by the rows of \(A \). Similarly, the column space \(\text{Col}(A) \) is the subspace spanned by the columns of \(A \). Clearly, \(\text{Row}(A) = \text{Col}(A^T) \).
Theorem

Let A be an $m \times n$ matrix. Then

$$\text{Row}(A) = \text{Row}(BA)$$

for all nonsingular $m \times m$ matrices B.

Proof.

Let

$$A = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix}$$

and

$$B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mm} \end{bmatrix}.$$

Then
Cont.

\[BA = \begin{bmatrix}
 b_{11}v_1 + b_{12}v_2 + \ldots + b_{1m}v_m \\
 b_{21}v_1 + b_{22}v_2 + \ldots + b_{2m}v_m \\
 \vdots \\
 b_{m1}v_1 + b_{m2}v_2 + \ldots + b_{mm}v_m
\end{bmatrix}. \]

Since \(b_{i1}v_1 + b_{i2}v_2 + \ldots + b_{im}v_m \in \text{Span}(v_1, v_2, \ldots, v_m) \),

\[\text{Row}(BA) \subset \text{Row}(A) \text{ for all } A \text{ and } B. \]

Let \(A' = BA \). Since \(B \) is nonsingular, \(A = B^{-1}A' \). So

\[\text{Row}(B^{-1}A') \subset \text{Row}(A') \iff \text{Row}(A) \subset \text{Row}(BA). \]

We conclude that \(\text{Row}(A) = \text{Row}(BA) \).
Remarks on $\text{Row}(A) = \text{Row}(BA)$

- Similarly, $\text{Col}(AB) = \text{Col}(A)$ for all $n \times n$ nonsingular matrices B.
- Let A' be a matrix in row echelon form obtained from A by row reduction. Then $\text{Row}(A) = \text{Row}(A')$, e.g.,

 \[
 \begin{bmatrix}
 1 & 2 & 3 \\
 2 & 3 & 1 \\
 3 & 1 & 2
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{bmatrix}
 = \mathbb{R}^3
 \]

- $\text{Row}(A) = \mathbb{R}^n$ if and only if $\text{rank}(A) = n$, i.e., A has full rank.
- If $A \in M_{n \times n}(\mathbb{R})$, A is nonsingular if and only if $\text{Row}(A) = \mathbb{R}^n$ ($\text{Col}(A) = \mathbb{R}^n$), i.e., the row (column) vectors of A span \mathbb{R}^n.