Math 225 Final Review

Some information on the final:

- Time and location: 09:00-11:00 Thu Dec 11, ED GYM Rows 1,3,5,7,9,11 (Seats 1-10)
- Sections covered by the final: (Poole’s Book) 4.1, 4.3, 4.4, 5.1-5.4, 6.1-6.6

A list of topics covered by the final:

- Vector Space
- Subspace
- Null, Row and Column Spaces
- Linear Dependence
- Span, Basis and Dimension
- Linear Transformation
- Matrix Representation of Linear Transformation
- Kernel and Range of Linear Transformation
- Injectivity, Surjectivity and Bijectivity of Linear Transformation
- Rank and Rank Theorem
- Change of Basis
- Eigenvalue, Eigenvector and Characteristic Polynomial
- Diagonalization
- Inner Product, Norm and Orthogonality
- Orthogonal Complement and Orthogonal Projection
- Gram-Schmidt Process
- Orthogonal Diagonalization of Symmetric Matrices

Review problems:

1. Which of the following statements are true and which are false? Justify your answer.

 a) Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be three vectors in a vector space V. If $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent, then \mathbf{v}_1 is a linear combination of \mathbf{v}_2 and \mathbf{v}_3.

 b) Let $T: V \rightarrow W$ be a linear transformation between two vectors space V and W and let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ be n vectors in V. If $T(\mathbf{v}_1), T(\mathbf{v}_2), \ldots, T(\mathbf{v}_n)$ are linearly independent, then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are linearly independent.
(c) Let \(T : V \to W \) be a linear transformation between two vectors space \(V \) and \(W \) and let \(v_1, v_2, \ldots, v_n \) be \(n \) vectors in \(V \). If \(v_1, v_2, \ldots, v_n \) are linearly dependent, then \(T(v_1), T(v_2), \ldots, T(v_n) \) are linearly dependent.

(d) An orthogonal matrix must be symmetric.

(e) Let \(T_1 : \mathbb{R}^5 \to \mathbb{R}^4 \) and \(T_2 : \mathbb{R}^4 \to \mathbb{R}^5 \) be two linear transformations. Then \(T_2 \circ T_1 \) cannot be onto.

(f) Let \(T_1 : \mathbb{R}^5 \to \mathbb{R}^4 \) and \(T_2 : \mathbb{R}^4 \to \mathbb{R}^5 \) be two linear transformations. Then \(T_1 \circ T_2 \) cannot be 1-1.

(g) Two \(4 \times 4 \) matrices with the same characteristic polynomial must be similar.

(h) A symmetric matrix with characteristic polynomial \((x-1)^n\) must be the \(n \times n \) identity matrix.

(i) If \(V_1 \) and \(V_2 \) are two subspaces of \(\mathbb{R}^n \) satisfying \(V_1 \subset V_2^\perp \), then \(\dim V_1 + \dim V_2 \leq n \).

(j) For all linear transformations \(T : V \to V \), \(K(T^2) \subset K(T) \).

(k) Let \(T : V \to V \) be a linear transformation satisfying \(R(T^2) = R(T^3) \). Then \(R(T^n) = R(T^{n+1}) \) for all \(n \geq 2 \).

(l) The product of two orthogonally diagonalizable matrices must be orthogonally diagonalizable.

(m) \(R(T) \subset R(T \circ S) \) for all linear transformations \(S : U \to V \) and \(T : V \to W \).

(2) Let \(M_{m \times n}(\mathbb{R}) \) be the vector space of \(m \times n \) real matrices and \(T : M_{2 \times 2}(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R}) \) be the map given by

\[
T(A) = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} A
\]

for all \(A \in M_{2 \times 2}(\mathbb{R}) \).

(a) Show that \(T \) is a linear transformation.

(b) Find the kernel, range and rank of \(T \).

(c) Is \(T \) onto, 1-1 and/or bijective? Justify your answer.

(d) Find the characteristic polynomial, eigenvalues and eigenvectors of \(T \).

(e) Is \(T \) diagonalizable? If it is, find a basis \(B \) of \(M_{2 \times 2}(\mathbb{R}) \) such that \([T]_{B \to B}\) is diagonal.

(3) Let \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) be a linear transformation given by

\[
T(x, y, z) = (2x + y + z, x + 2y + z, x + y + 2z).
\]

(a) Find the kernel, range and rank of \(T \).

(b) Is \(T \) onto, 1-1 and/or bijective?
(c) Find the matrix $[T]_{B \rightarrow B}$ representing T under the standard basis B.
(d) Find the matrix $[T]_{C \rightarrow C}$ representing T under the basis

\[C = \begin{bmatrix}
1 & 1 \\
1 & 1 \\
1 & 0
\end{bmatrix}, \begin{bmatrix}
1 & 1 \\
1 & 0 \\
0 & 0
\end{bmatrix} \].

(e) Find the eigenvalues, eigenvectors and characteristic polynomial of T.
(f) Is T diagonalizable? If it is, find a basis D such that $[T]_{D \rightarrow D}$ is diagonal.

(4) Let P_3 be the vector space of real polynomials of degree ≤ 3 and $T : P_3 \rightarrow P_3$ be the map given by

\[T(f(x)) = x f'(x) + f(1). \]

(a) Show that T is a linear transformation.
(b) Find the kernel, range and rank of T.
(c) Find the characteristic polynomial, eigenvalues and eigenvectors of T.
(d) Is T diagonalizable? If it is, find a basis B of P_3 such that $[T]_{B \rightarrow B}$ is diagonal.

(5) Let V_1 and V_2 be two subspaces of \mathbb{R}^n satisfying $V_1 \subset V_2 ^\perp$. Show that

\[\text{proj}_{V_1 + V_2} \mathbf{v} = \text{proj}_{V_1} \mathbf{v} + \text{proj}_{V_2} \mathbf{v} \]

for all $\mathbf{v} \in \mathbb{R}^n$.

(6) Let W be the subspace of \mathbb{R}^4 given by

$W = \{(x_1, x_2, x_3, x_4) : x_1 + x_2 + x_3 = x_2 + x_3 + x_4 = 0\}$.

(a) Find an orthonormal basis for W.
(b) Find the projection of $\mathbf{v} = (1, 1, 1, 1)$ onto W.
(c) Let $T : \mathbb{R}^4 \rightarrow \mathbb{R}^4$ be the linear transformation given by

\[T(\mathbf{v}) = \text{proj}_W \mathbf{v}. \]

Find the kernel and range of T and find $[T]_{B \rightarrow B}$ under the standard basis B of \mathbb{R}^4.

(7) Let $T : V \rightarrow V$ be a linear endomorphism whose characteristic polynomial is $x^4 - 3x^2 + 2$.

(a) Show that T is bijective.
(b) Find the characteristic polynomial of $T + T^{-1}$.
(8) Let $T_1 : V \rightarrow W$ and $T_2 : V \rightarrow W$ be two linear transformations between two vector spaces V and W. Show that

$$K(T_1) \cap K(T_1 - T_2) = K(T_1 + T_2) \cap K(T_2).$$

(9) Find the vector

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$$

which minimizes

$$\left\| \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x} \right\|.$$

(10) Let $T_1 : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ and $T_2 : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be two linear transformations satisfying $T_1 \circ T_2 = T_2 \circ T_1 = 0,$

$$T_1(1, 1) = (2, 1) \text{ and } T_2(1, 2) = (1, 0).$$

(a) Find T_1 and T_2.

(b) Find the kernels and ranges of T_1 and T_2.

(11) Orthogonally diagonalize the following symmetric matrices:

a) $\begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$

(12) Let V be a vector space of finite dimension and $T : V \rightarrow V$ be a linear transformation satisfying $T^2 - 3T + 2I = 0$. Show that T is diagonalizable.