Outline

1. Operations of Linear Transformations
2. Kernel and Range
Definition

Let $T_1 : V \to W$ and $T_2 : V \to W$ be linear transformations between two vector spaces V and W over \mathbb{R}. Then $T_1 + T_2 : V \to W$ is the map

$$(T_1 + T_2)(v) = T_1(v) + T_2(v).$$

Let $T : V \to W$ be a linear transformation between two vector spaces V and W over \mathbb{R} and $c \in \mathbb{R}$. Then $cT : V \to W$ is the map

$$(cT)(v) = cT(v).$$

Let $T_1 : V \to W$ and $T_2 : U \to V$ be linear transformations between vector spaces U, V and W. Then $T_1 \circ T_2$ is the map

$$(T_1 \circ T_2)(u) = T_1(T_2(u)).$$
Definition

Let \(T_1 : V \to W \) and \(T_2 : V \to W \) be linear transformations between two vector spaces \(V \) and \(W \) over \(\mathbb{R} \). Then \(T_1 + T_2 : V \to W \) is the map

\[
(T_1 + T_2)(v) = T_1(v) + T_2(v).
\]

Let \(T : V \to W \) be a linear transformation between two vector spaces \(V \) and \(W \) over \(\mathbb{R} \) and \(c \in \mathbb{R} \). Then \(cT : V \to W \) is the map

\[
(cT)(v) = cT(v).
\]

Let \(T_1 : V \to W \) and \(T_2 : U \to V \) be linear transformations between vector spaces \(U, V \) and \(W \). Then \(T_1 \circ T_2 \) is the map

\[
(T_1 \circ T_2)(u) = T_1(T_2(u)).
\]
Definition

Let $T_1 : V \rightarrow W$ and $T_2 : V \rightarrow W$ be linear transformations between two vector spaces V and W over \mathbb{R}. Then $T_1 + T_2 : V \rightarrow W$ is the map

$$(T_1 + T_2)(v) = T_1(v) + T_2(v).$$

Let $T : V \rightarrow W$ be a linear transformation between two vector spaces V and W over \mathbb{R} and $c \in \mathbb{R}$. Then $cT : V \rightarrow W$ is the map

$$(cT)(v) = cT(v).$$

Let $T_1 : V \rightarrow W$ and $T_2 : U \rightarrow V$ be linear transformations between vector spaces U, V and W. Then $T_1 \circ T_2$ is the map

$$(T_1 \circ T_2)(u) = T_1(T_2(u)).$$
Vector Space $L(V, W)$

Theorem

- For all linear transformations $T_1 : V \rightarrow W$ and $T_2 : V \rightarrow W$ and $c \in \mathbb{R}$, $T_1 + T_2$ and cT_1 are also linear transformations from V to W.

- Furthermore,

 $$[T_1 + T_2]_{B_2 \leftarrow B_1} = [T_1]_{B_2 \leftarrow B_1} + [T_2]_{B_2 \leftarrow B_1} \quad \text{and} \quad [cT_1]_{B_2 \leftarrow B_1} = c[T_1]_{B_2 \leftarrow B_1}$$

 where B_1 is a basis for V and B_2 is a basis for W.

- Let $L(V, W)$ be the set of all linear transformations from V to W. Then $L(V, W)$ is itself a vector space over \mathbb{R} under the addition and scalar multiplication defined above.
Vector Space \(L(V, W) \)

Theorem

- For all linear transformations \(T_1 : V \to W \) and \(T_2 : V \to W \) and \(c \in \mathbb{R} \), \(T_1 + T_2 \) and \(cT_1 \) are also linear transformations from \(V \) to \(W \).
- Furthermore,

\[
[T_1 + T_2]_{B_2 \leftarrow B_1} = [T_1]_{B_2 \leftarrow B_1} + [T_2]_{B_2 \leftarrow B_1} \quad \text{and} \quad [cT_1]_{B_2 \leftarrow B_1} = c[T_1]_{B_2 \leftarrow B_1}
\]

where \(B_1 \) is a basis for \(V \) and \(B_2 \) is a basis for \(W \).
- Let \(L(V, W) \) be the set of all linear transformations from \(V \) to \(W \). Then \(L(V, W) \) is itself a vector space over \(\mathbb{R} \) under the addition and scalar multiplication defined above.
Theorem

For all linear transformations $T_1 : V \rightarrow W$ and $T_2 : V \rightarrow W$ and $c \in \mathbb{R}$, $T_1 + T_2$ and cT_1 are also linear transformations from V to W.

Furthermore,

$$[T_1 + T_2]_{B_2 \leftarrow B_1} = [T_1]_{B_2 \leftarrow B_1} + [T_2]_{B_2 \leftarrow B_1} \text{ and}$$

$$[cT_1]_{B_2 \leftarrow B_1} = c[T_1]_{B_2 \leftarrow B_1}$$

where B_1 is a basis for V and B_2 is a basis for W.

Let $L(V, W)$ be the set of all linear transformations from V to W. Then $L(V, W)$ is itself a vector space over \mathbb{R} under the addition and scalar multiplication defined above.
Let $T_1 : V \to W$ and $T_2 : U \to V$ be linear transformations between vector spaces U, V and W. Then $T_1 \circ T_2$ is a linear transformation from $U \to W$.

Furthermore,

$$[T_1 \circ T_2]_{B_3 \leftarrow B_1} = [T_1]_{B_3 \leftarrow B_2}[T_2]_{B_2 \leftarrow B_1}$$

where B_1, B_2, B_3 are bases for U, V, W, respectively.

1. $(T_1 \circ T_2) \circ T_3 = T_1 \circ (T_2 \circ T_3)$
2. $c(T_1 \circ T_2) = (cT_1) \circ T_2 = T_1 \circ (cT_2)$
3. $T_1 \circ (T_2 + T_3) = T_1 \circ T_2 + T_1 \circ T_3$
4. $(T_1 + T_2) \circ T_3 = T_1 \circ T_3 + T_2 \circ T_3$.

Xi Chen
Linear Algebra II Lecture 8
Theorem

Let $T_1 : V \to W$ and $T_2 : U \to V$ be linear transformations between vector spaces U, V and W. Then $T_1 \circ T_2$ is a linear transformation from $U \to W$.

Furthermore,

$$[T_1 \circ T_2]_{B_3 \leftarrow B_1} = [T_1]_{B_3 \leftarrow B_2} [T_2]_{B_2 \leftarrow B_1}$$

where B_1, B_2, B_3 are bases for U, V, W, respectively.

- $(T_1 \circ T_2) \circ T_3 = T_1 \circ (T_2 \circ T_3)$
- $c(T_1 \circ T_2) = (cT_1) \circ T_2 = T_1 \circ (cT_2)$
- $T_1 \circ (T_2 + T_3) = T_1 \circ T_2 + T_1 \circ T_3$
- $(T_1 + T_2) \circ T_3 = T_1 \circ T_3 + T_2 \circ T_3$.
Theorem

Let $T_1 : V \to W$ and $T_2 : U \to V$ be linear transformations between vector spaces U, V and W. Then $T_1 \circ T_2$ is a linear transformation from $U \to W$.

Furthermore,

$$[T_1 \circ T_2]_{B_3}^{B_1} = [T_1]_{B_3}^{B_2} [T_2]_{B_2}^{B_1}$$

where B_1, B_2, B_3 are bases for U, V, W, respectively.

1. $(T_1 \circ T_2) \circ T_3 = T_1 \circ (T_2 \circ T_3)$
2. $c(T_1 \circ T_2) = (cT_1) \circ T_2 = T_1 \circ (cT_2)$
3. $T_1 \circ (T_2 + T_3) = T_1 \circ T_2 + T_1 \circ T_3$
4. $(T_1 + T_2) \circ T_3 = T_1 \circ T_3 + T_2 \circ T_3$.
Example of Operations of Linear Transformations

Let $T_1(x, y) = (x + y, x - y)$ and $T_2(x, y) = (y, x)$ be two linear transformations from $\mathbb{R}^2 \to \mathbb{R}^2$. Then

$$(T_1 + T_2)(x, y) = T_1(x, y) + T_2(x, y) = (x + 2y, 2x - y)$$

$$(2T_1)(x, y) = 2T_1(x, y) = (2x + 2y, 2x - 2y)$$

$$(2T_2)(x, y) = 2T_2(x, y) = (2y, 2x)$$

$T_1 \circ T_2(x, y) = T_1(T_2(x, y)) = T_1(y, x) = (y + x, y - x)$$

$T_2 \circ T_1(x, y) = T_2(T_1(x, y)) = T_2(x + y, x - y) = (x - y, x + y)$

Note that $T_1 \circ T_2 \neq T_2 \circ T_1$!!!
Example of Operations of Linear Transformations

Let $T_1(x, y) = (x + y, x - y)$ and $T_2(x, y) = (y, x)$ be two linear transformations from $\mathbb{R}^2 \rightarrow \mathbb{R}^2$. Then

$$(T_1 + T_2)(x, y) = T_1(x, y) + T_2(x, y) = (x + 2y, 2x - y)$$

$$(2T_1)(x, y) = 2T_1(x, y) = (2x + 2y, 2x - 2y)$$ and

$$(2T_2)(x, y) = 2T_2(x, y) = (2y, 2x)$$

$T_1 \circ T_2(x, y) = T_1(T_2(x, y)) = T_1(y, x) = (y + x, y - x)$$

$T_2 \circ T_1(x, y) = T_2(T_1(x, y)) = T_2(x + y, x - y) = (x - y, x + y)$$

Note that $T_1 \circ T_2 \neq T_2 \circ T_1$!!!
Let $T_1(x, y) = (x + y, x - y)$ and $T_2(x, y) = (y, x)$ be two linear transformations from $\mathbb{R}^2 \to \mathbb{R}^2$. Then

$$(T_1 + T_2)(x, y) = T_1(x, y) + T_2(x, y) = (x + 2y, 2x - y)$$

$$(2T_1)(x, y) = 2T_1(x, y) = (2x + 2y, 2x - 2y)$$ and

$$(2T_2)(x, y) = 2T_2(x, y) = (2y, 2x)$$

$$T_1 \circ T_2(x, y) = T_1(T_2(x, y)) = T_1(y, x) = (y + x, y - x)$$

$$T_2 \circ T_1(x, y) = T_2(T_1(x, y)) = T_2(x + y, x - y) = (x - y, x + y)$$

Note that $T_1 \circ T_2 \neq T_2 \circ T_1$!!!
Let $T_1(x, y) = (x + y, x - y)$ and $T_2(x, y) = (y, x)$ be two linear transformations from $\mathbb{R}^2 \to \mathbb{R}^2$. Then

$$(T_1 + T_2)(x, y) = T_1(x, y) + T_2(x, y) = (x + 2y, 2x - y)$$

$$(2T_1)(x, y) = 2T_1(x, y) = (2x + 2y, 2x - 2y)$$ and

$$(2T_2)(x, y) = 2T_2(x, y) = (2y, 2x)$$

$T_1 \circ T_2(x, y) = T_1(T_2(x, y)) = T_1(y, x) = (y + x, y - x)$$

$T_2 \circ T_1(x, y) = T_2(T_1(x, y)) = T_2(x + y, x - y) = (x - y, x + y)$

Note that $T_1 \circ T_2 \neq T_2 \circ T_1$!!!
Example of Operations of Linear Transformations

Let $T_1(x, y) = (x + y, x - y)$ and $T_2(x, y) = (y, x)$ be two linear transformations from $\mathbb{R}^2 \to \mathbb{R}^2$. Then

$$(T_1 + T_2)(x, y) = T_1(x, y) + T_2(x, y) = (x + 2y, 2x - y)$$

$$(2T_1)(x, y) = 2T_1(x, y) = (2x + 2y, 2x - 2y)$$

$$(2T_2)(x, y) = 2T_2(x, y) = (2y, 2x)$$

$T_1 \circ T_2(x, y) = T_1(T_2(x, y)) = T_1(y, x) = (y + x, y - x)$$

$T_2 \circ T_1(x, y) = T_2(T_1(x, y)) = T_2(x + y, x - y) = (x - y, x + y)$$

Note that $T_1 \circ T_2 \neq T_2 \circ T_1$!!!
Let $T_1(x, y) = (x + y, x - y)$ and $T_2(x, y) = (y, x)$ be two linear transformations from $\mathbb{R}^2 \to \mathbb{R}^2$. Then

$$(T_1 + T_2)(x, y) = T_1(x, y) + T_2(x, y) = (x + 2y, 2x - y)$$

$$(2T_1)(x, y) = 2T_1(x, y) = (2x + 2y, 2x - 2y)$$

and

$$(2T_2)(x, y) = 2T_2(x, y) = (2y, 2x)$$

$$T_1 \circ T_2(x, y) = T_1(T_2(x, y)) = T_1(y, x) = (y + x, y - x)$$

$$T_2 \circ T_1(x, y) = T_2(T_1(x, y)) = T_2(x + y, x - y) = (x - y, x + y)$$

Note that $T_1 \circ T_2 \neq T_2 \circ T_1$!!
Let B be the standard basis. Then

$$[T_1] = [T_1]_{B \leftarrow B} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad \text{and} \quad [T_2] = [T_2]_{B \leftarrow B} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$(T_1 + T_2)(x, y) = (x + 2y, 2x - y)$$

$$[T_1 + T_2] = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} = [T_1] + [T_2]$$

$$(2T_1)(x, y) = (2x + 2y, 2x - 2y) \quad \quad (2T_2)(x, y) = (2y, 2x)$$

$$[2T_1] = \begin{bmatrix} 2 & 2 \\ 2 & -2 \end{bmatrix} = 2[T_1] \quad \text{and} \quad [2T_2] = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} = 2[T_2]$$
Example of Operations of Linear Transformations

Let B be the standard basis. Then

$$[T_1] = [T_1]_{B\leftrightarrow B} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad \text{and} \quad [T_2] = [T_2]_{B\leftrightarrow B} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$([T_1] + [T_2]) (x, y) = (x + 2y, 2x - y)$$

$$[T_1] + [T_2] = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} = [T_1] + [T_2]$$

$$(2T_1)(x, y) = (2x + 2y, 2x - 2y) \quad \quad (2T_2)(x, y) = (2y, 2x)$$

$$[2T_1] = \begin{bmatrix} 2 & 2 \\ 2 & -2 \end{bmatrix} = 2[T_1] \quad \text{and} \quad [2T_2] = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} = 2[T_2]$$
Example of Operations of Linear Transformations

Let B be the standard basis. Then

$$[T_1] = [T_1]_{B \leftrightarrow B} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad \text{and} \quad [T_2] = [T_2]_{B \leftrightarrow B} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$(T_1 + T_2)(x, y) = (x + 2y, 2x - y)$$

$$[T_1 + T_2] = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} = [T_1] + [T_2]$$

$$(2T_1)(x, y) = (2x + 2y, 2x - 2y) \quad \quad (2T_2)(x, y) = (2y, 2x)$$

$$[2T_1] = \begin{bmatrix} 2 & 2 \\ 2 & -2 \end{bmatrix} = 2[T_1] \quad \quad \text{and} \quad \quad [2T_2] = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} = 2[T_2]$$
Example of Operations of Linear Transformations

Let B be the standard basis. Then

$[T_1] = [T_1]_{B \leftarrow B} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ and $[T_2] = [T_2]_{B \leftarrow B} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$(T_1 + T_2)(x, y) = (x + 2y, 2x - y)$

$[T_1 + T_2] = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} = [T_1] + [T_2]$

$(2T_1)(x, y) = (2x + 2y, 2x - 2y)$

$(2T_2)(x, y) = (2y, 2x)$

$[2T_1] = \begin{bmatrix} 2 & 2 \\ 2 & -2 \end{bmatrix} = 2[T_1]$ and $[2T_2] = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} = 2[T_2]$
Example of Operations of Linear Transformations

\[T_1 \circ T_2(x, y) = (x + y, -x + y) \]

\[[T_1 \circ T_2] = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = [T_1][T_2] \]

\[T_2 \circ T_1(x, y) = (x - y, x + y) \]

\[[T_2 \circ T_1] = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = [T_2][T_1] \]

Note that

\[[T_1][T_2] \neq [T_2][T_1] \Leftrightarrow T_1 \circ T_2 \neq T_2 \circ T_1 \]
Example of Operations of Linear Transformations

\[T_1 \circ T_2(x, y) = (x + y, -x + y) \]

\[
[T_1 \circ T_2] = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = [T_1][T_2]
\]

\[T_2 \circ T_1(x, y) = (x - y, x + y) \]

\[
[T_2 \circ T_1] = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = [T_2][T_1]
\]

Note that

\[[T_1][T_2] \neq [T_2][T_1] \iff T_1 \circ T_2 \neq T_2 \circ T_1 \]
Example of Operations of Linear Transformations

\[T_1 \circ T_2(x, y) = (x + y, -x + y) \]

\[
[T_1 \circ T_2] = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = [T_1][T_2]
\]

\[T_2 \circ T_1(x, y) = (x - y, x + y) \]

\[
[T_2 \circ T_1] = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = [T_2][T_1]
\]

Note that

\[[T_1][T_2] \neq [T_2][T_1] \iff T_1 \circ T_2 \neq T_2 \circ T_1 \]
Definition

Let $T : V \to W$ be a linear transformation from V to W. The \textit{kernel} of T is $K(T) = \ker(T) = \{ x \in V : T(x) = 0 \} \subset V$. The \textit{range} of T is the image of T, i.e., \[R(T) = T(V) = \{ T(x) : x \in V \} \subset W. \]

Theorem

Let $T : V \to W$ be a linear transformation from V to W. Then $K(T)$ is a subspace of V and $R(T)$ is a subspace of W.

Let $T(x, y) = (x, x)$ be a linear transformation from $\mathbb{R}^2 \to \mathbb{R}^2$. Then $K(T) = \{ (x, y) : T(x, y) = (0, 0) \} = \{ (x, y) : x = 0 \}$ and $R(T) = \{ T(x, y) \} = \{ (x, x) \} = \{ (x, y) : x - y = 0 \}$.
Kernel and Range

Definition

Let $T : V \rightarrow W$ be a linear transformation from V to W. The kernel of T is $\ker(T) = \{x \in V : T(x) = 0\} \subset V$. The range of T is the image of T, i.e., $R(T) = T(V) = \{T(x) : x \in V\} \subset W$.

Theorem

Let $T : V \rightarrow W$ be a linear transformation from V to W. Then $K(T)$ is a subspace of V and $R(T)$ is a subspace of W.

Let $T(x, y) = (x, x)$ be a linear transformation from $\mathbb{R}^2 \rightarrow \mathbb{R}^2$. Then $K(T) = \{(x, y) : T(x, y) = (0, 0)\} = \{(x, y) : x = 0\}$ and $R(T) = \{T(x, y)\} = \{(x, x)\} = \{(x, y) : x - y = 0\}$.
Kernel and Range

Definition

Let \(T : V \to W \) be a linear transformation from \(V \) to \(W \). The \textit{kernel} of \(T \) is \(K(T) = \ker(T) = \{ x \in V : T(x) = 0 \} \subset V \). The \textit{range} of \(T \) is the image of \(T \), i.e., \(R(T) = T(V) = \{ T(x) : x \in V \} \subset W \).

Theorem

Let \(T : V \to W \) be a linear transformation from \(V \) to \(W \). Then \(K(T) \) is a subspace of \(V \) and \(R(T) \) is a subspace of \(W \).

Let \(T(x, y) = (x, x) \) be a linear transformation from \(\mathbb{R}^2 \to \mathbb{R}^2 \). Then \(K(T) = \{(x, y) : T(x, y) = (0, 0)\} = \{(x, y) : x = 0\} \) and \(R(T) = \{T(x, y)\} = \{(x, x)\} = \{(x, y) : x - y = 0\} \).
Definition

Let $T : V \rightarrow W$ be a linear transformation from V to W. The *kernel* of T is $K(T) = \ker(T) = \{ \mathbf{x} \in V : T(\mathbf{x}) = 0 \} \subset V$. The *range* of T is the image of T, i.e.,

$$R(T) = T(V) = \{ T(\mathbf{x}) : \mathbf{x} \in V \} \subset W.$$

Theorem

Let $T : V \rightarrow W$ be a linear transformation from V to W. Then $K(T)$ is a subspace of V and $R(T)$ is a subspace of W.

Let $T(x, y) = (x, x)$ be a linear transformation from $\mathbb{R}^2 \rightarrow \mathbb{R}^2$. Then $K(T) = \{(x, y) : T(x, y) = (0, 0)\} = \{(x, y) : x = 0\}$ and $R(T) = \{ T(x, y) \} = \{(x, x)\} = \{(x, y) : x - y = 0\}$.

Proof that $K(T)$ and $R(T)$ are subspaces

$K(T)$ is a subspace of V.

Since $T(0) = 0$, $0 \in K(T)$. For all $v_1, v_2 \in K(T)$, $T(v_1) = T(v_2) = 0$ and hence

$$T(v_1 + cv_2) = T(v_1) + cT(v_2) = 0$$

for all $c \in \mathbb{R}$. Therefore, $v_1 + cv_2 \in K(T)$.

$R(T)$ is a subspace of W.

Since $T(0) \in R(T)$, $0 \in R(T)$. For all $w_1, w_2 \in R(T)$, there exist $v_1, v_2 \in V$ such that $w_1 = T(v_1)$ and $w_2 = T(v_2)$. Thus,

$$w_1 + cw_2 = T(v_1) + cT(v_2) = T(v_1 + cv_2) \in R(T).$$
Proof that \(K(T) \) and \(R(T) \) are subspaces

\(K(T) \) is a subspace of \(V \).

Since \(T(0) = 0 \), \(0 \in K(T) \). For all \(\mathbf{v}_1, \mathbf{v}_2 \in K(T) \), \(T(\mathbf{v}_1) = T(\mathbf{v}_2) = 0 \) and hence

\[
T(\mathbf{v}_1 + c\mathbf{v}_2) = T(\mathbf{v}_1) + cT(\mathbf{v}_2) = 0
\]

for all \(c \in \mathbb{R} \). Therefore, \(\mathbf{v}_1 + c\mathbf{v}_2 \in K(T) \).

\(R(T) \) is a subspace of \(W \).

Since \(T(0) \in R(T) \), \(0 \in R(T) \). For all \(\mathbf{w}_1, \mathbf{w}_2 \in R(T) \), there exist \(\mathbf{v}_1, \mathbf{v}_2 \in V \) such that \(\mathbf{w}_1 = T(\mathbf{v}_1) \) and \(\mathbf{w}_2 = T(\mathbf{v}_2) \). Thus,

\[
\mathbf{w}_1 + c\mathbf{w}_2 = T(\mathbf{v}_1) + cT(\mathbf{v}_2) = T(\mathbf{v}_1 + c\mathbf{v}_2) \in R(T).
\]
Proof that $K(T)$ and $R(T)$ are subspaces

$K(T)$ is a subspace of V.

Since $T(0) = 0$, $0 \in K(T)$. For all $v_1, v_2 \in K(T)$, $T(v_1) = T(v_2) = 0$ and hence

$$T(v_1 + cv_2) = T(v_1) + cT(v_2) = 0$$

for all $c \in \mathbb{R}$. Therefore, $v_1 + cv_2 \in K(T)$.

$R(T)$ is a subspace of W.

Since $T(0) \in R(T)$, $0 \in R(T)$. For all $w_1, w_2 \in R(T)$, there exist $v_1, v_2 \in V$ such that $w_1 = T(v_1)$ and $w_2 = T(v_2)$. Thus,

$$w_1 + cw_2 = T(v_1) + cT(v_2) = T(v_1 + cv_2) \in R(T).$$
Proof that $K(T)$ and $R(T)$ are subspaces

$K(T)$ is a subspace of V.

Since $T(0) = 0$, $0 \in K(T)$. For all $v_1, v_2 \in K(T)$, $T(v_1) = T(v_2) = 0$ and hence

$$T(v_1 + cv_2) = T(v_1) + cT(v_2) = 0$$

for all $c \in \mathbb{R}$. Therefore, $v_1 + cv_2 \in K(T)$.

$R(T)$ is a subspace of W.

Since $T(0) \in R(T)$, $0 \in R(T)$. For all $w_1, w_2 \in R(T)$, there exist $v_1, v_2 \in V$ such that $w_1 = T(v_1)$ and $w_2 = T(v_2)$. Thus,

$$w_1 + cw_2 = T(v_1) + cT(v_2) = T(v_1 + cv_2) \in R(T).$$
If $R(T)$ is finite-dimensional, then the dimension of $R(T)$ is called the *rank* of T, denoted by

$$\text{rank}(T) = \dim R(T) = \dim T(V).$$

Given a basis $B = \{v_1, v_2, ..., v_n\}$ of V, then the range of a linear transformation $T : V \to W$ is

$$R(T) = T(V) = \text{Span}\{T(v_1), T(v_2), ..., T(v_n)\}.$$

Note that

$$\text{rank}(T) = \dim R(T) = \dim \text{Span}\{T(v_1), T(v_2), ..., T(v_n)\} \leq n = \dim V.$$
If \(R(T) \) is finite-dimensional, then the dimension of \(R(T) \) is called the \textit{rank} of \(T \), denoted by

\[
\text{rank}(T) = \dim R(T) = \dim T(V).
\]

Given a basis \(B = \{v_1, v_2, \ldots, v_n\} \) of \(V \), then the range of a linear transformation \(T : V \rightarrow W \) is

\[
R(T) = T(V) = \text{Span}\{T(v_1), T(v_2), \ldots, T(v_n)\}.
\]

Note that

\[
\text{rank}(T) = \dim R(T) = \dim \text{Span}\{T(v_1), T(v_2), \ldots, T(v_n)\} \leq n = \dim V.
\]
If $R(T)$ is finite-dimensional, then the dimension of $R(T)$ is called the \textit{rank} of T, denoted by

$$\text{rank}(T) = \dim R(T) = \dim T(V).$$

Given a basis $B = \{v_1, v_2, \ldots, v_n\}$ of V, then the range of a linear transformation $T : V \rightarrow W$ is

$$R(T) = T(V) = \text{Span}\{T(v_1), T(v_2), \ldots, T(v_n)\}.$$

Note that

$$\text{rank}(T) = \dim R(T) = \dim \text{Span}\{T(v_1), T(v_2), \ldots, T(v_n)\} \leq n = \dim V.$$

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation given by

$$T(v) = Av$$

for an $m \times n$ matrix A. Then

$$K(T) = \{v : T(v) = 0\} = \{v : Av = 0\} = \text{Nul}(A).$$

$$R(T) = \text{Span}\{T(e_1), T(e_2), \ldots, T(e_n)\}$$

$$= \text{Span}\{Ae_1, Ae_2, \ldots, Ae_n\} = \text{Col}(A).$$

$$\text{rank}(T) = \dim R(T) = \dim \text{Col}(A) = \text{rank}(A).$$
Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation given by

$$T(v) = Av$$

for an $m \times n$ matrix A. Then

$$K(T) = \{v : T(v) = 0\} = \{v : Av = 0\} = \text{Nul}(A).$$

$$R(T) = \text{Span}\{T(e_1), T(e_2), \ldots, T(e_n)\}$$

$$= \text{Span}\{Ae_1, Ae_2, \ldots, Ae_n\} = \text{Col}(A).$$

$$\text{rank}(T) = \dim R(T) = \dim \text{Col}(A) = \text{rank}(A).$$
Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation given by

$$T(\mathbf{v}) = A\mathbf{v}$$

for an $m \times n$ matrix A. Then

$$K(T) = \{ \mathbf{v} : T(\mathbf{v}) = 0 \} = \{ \mathbf{v} : A\mathbf{v} = 0 \} = \text{Nul}(A).$$

$$R(T) = \text{Span}\{ T(\mathbf{e}_1), T(\mathbf{e}_2), \ldots, T(\mathbf{e}_n) \}$$

$$= \text{Span}\{ A\mathbf{e}_1, A\mathbf{e}_2, \ldots, A\mathbf{e}_n \} = \text{Col}(A).$$

$$\text{rank}(T) = \dim R(T) = \dim \text{Col}(A) = \text{rank}(A).$$
Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation given by

$$T(v) = Av$$

for an $m \times n$ matrix A. Then

$$K(T) = \{v : T(v) = 0\} = \{v : Av = 0\} = \text{Nul}(A).$$

$$R(T) = \text{Span}\{T(e_1), T(e_2), \ldots, T(e_n)\}$$

$$= \text{Span}\{Ae_1, Ae_2, \ldots, Ae_n\} = \text{Col}(A).$$

$$\text{rank}(T) = \dim R(T) = \dim \text{Col}(A) = \text{rank}(A).$$