Linear Algebra II Lecture 3

Xi Chen

1University of Alberta

September 10, 2014
Outline

1. Subspace
2. Span
Definition. A subset $W \subset V$ of a vector space V over \mathbb{R} is a subspace if $W \neq \emptyset$ and

- $w_1 + cw_2 \in W$ for all $w_1, w_2 \in W$ and all $c \in \mathbb{R}$.

Note that

- a subspace $W \subset V$ is itself a vector space;
- a subspace $W \subset V$ is never empty ($0 \in W$);
- $\{0\}$ and V are subspaces of V.
Definition. A subset \(W \subset V \) of a vector space \(V \) over \(\mathbb{R} \) is a subspace if \(W \neq \emptyset \) and

- \(w_1 + cw_2 \in W \) for all \(w_1, w_2 \in W \) and all \(c \in \mathbb{R} \).

Note that

- a subspace \(W \subset V \) is itself a vector space;
- a subspace \(W \subset V \) is never empty (\(\mathbf{0} \in W \));
- \(\{\mathbf{0}\} \) and \(V \) are subspaces of \(V \).
Theorem

The intersection $V_1 \cap V_2$ of two subspaces V_1 and V_2 of V is also a subspace.

Proof.

For all $u, v \in V_1 \cap V_2$ and $c \in \mathbb{R}$,

$$V_1 \text{ is a subspace } \Rightarrow u + cv \in V_1 \quad V_2 \text{ is a subspace } \Rightarrow u + cv \in V_2 \Rightarrow u + cv \in V_1 \cap V_2.$$

So $V_1 \cap V_2$ is a subspace of V.

Xi Chen
Linear Algebra II Lecture 3
Intersections of Subspaces

Theorem
The intersection $V_1 \cap V_2$ of two subspaces V_1 and V_2 of V is also a subspace.

Proof.
For all $u, v \in V_1 \cap V_2$ and $c \in \mathbb{R}$,

- V_1 is a subspace $\Rightarrow u + cv \in V_1$

- V_2 is a subspace $\Rightarrow u + cv \in V_2$

$\Rightarrow u + cv \in V_1 \cap V_2$.

So $V_1 \cap V_2$ is a subspace of V.

Xi Chen
Linear Algebra II Lecture 3
Examples of intersections of subspaces

Let A_1 and A_2 be two matrices of size $m_1 \times n$ and $m_2 \times n$, respectively. Let $N_{A_1} = \text{Nul}(A_1) = \{x : A_1x = 0\}$ and $N_{A_2} = \text{Nul}(A_2) = \{x : A_2x = 0\}$. Then

$$N_{A_1} \cap N_{A_2} = \left\{ x : \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} x = 0 \right\}$$

e.g.,

$$\{(x, y) : 3x + 4y = 0\} \cap \{(x, y) : x + y = 0\} = \{(x, y) : 3x + 4y = x + y = 0\} = \{(0, 0)\}$$

$$\{(x, y, z) : x - y + z = 0\} \cap \{(x, y, z) : 3x + 4y + 5z = 0\} = \{(x, y, z) : x - y + z = 3x + 4y + 5z = 0\} = \left\{ (x, y, z) : \begin{bmatrix} 1 & -1 & 1 \\ 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} = \{(-9t, -2t, 7t)\}$$
Examples of intersections of subspaces

Let A_1 and A_2 be two matrices of size $m_1 \times n$ and $m_2 \times n$, respectively. Let $N_{A_1} = \text{Nul}(A_1) = \{ \mathbf{x} : A_1 \mathbf{x} = 0 \}$ and $N_{A_2} = \text{Nul}(A_2) = \{ \mathbf{x} : A_2 \mathbf{x} = 0 \}$. Then

$$N_{A_1} \cap N_{A_2} = \left\{ \mathbf{x} : \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \mathbf{x} = 0 \right\}$$

e.g.,

$$\{(x, y) : 3x + 4y = 0\} \cap \{(x, y) : x + y = 0\} = \{(x, y) : 3x + 4y = x + y = 0\} = \{(0, 0)\}$$

$$\{(x, y, z) : x - y + z = 0\} \cap \{(x, y, z) : 3x + 4y + 5z = 0\} = \{(x, y, z) : x - y + z = 3x + 4y + 5z = 0\}$$

$$= \left\{ (x, y, z) : \begin{bmatrix} 1 & -1 & 1 \\ 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} = \{(-9t, -2t, 7t)\}$$
More examples of intersections

Let $F(\mathbb{R}) = \{ f \mid f : \mathbb{R} \to \mathbb{R} \}$, $E = \{ f \in F(\mathbb{R}) : f(-x) \equiv f(x) \}$ and $O = \{ f \in F(\mathbb{R}) : f(-x) \equiv -f(x) \}$. Both E and O are subspaces of $F(\mathbb{R})$. Their intersection is

$$E \cap O = \{0\}.$$

If $f(x) \in E \cap O$, then $f(-x) = f(x)$ and $f(-x) = -f(x)$ for all $x \Rightarrow f(x) \equiv -f(x)$, i.e., $f(x) \equiv 0$.

Let $U = \{ A \in M_{n \times n}(\mathbb{R}) : A = A^T \}$ and $V = \{ A \in M_{n \times n}(\mathbb{R}) : -A = A^T \}$. Then

$$U \cap V = \{0\}$$

since $A = A^T$ and $-A = A^T \Rightarrow A = -A \Rightarrow A = 0.$
More examples of intersections

Let \(F(\mathbb{R}) = \{ f \mid f : \mathbb{R} \to \mathbb{R} \} \), \(E = \{ f \in F(\mathbb{R}) : f(-x) \equiv f(x) \} \) and \(O = \{ f \in F(\mathbb{R}) : f(-x) \equiv -f(x) \} \). Both \(E \) and \(O \) are subspaces of \(F(\mathbb{R}) \). Their intersection is

\[
E \cap O = \{0\}.
\]

If \(f(x) \in E \cap O \), then \(f(-x) = f(x) \) and \(f(-x) = -f(x) \) for all \(x \Rightarrow f(x) \equiv -f(x) \), i.e., \(f(x) \equiv 0 \).

Let \(U = \{ A \in M_{n \times n}(\mathbb{R}) : A = A^T \} \) and \(V = \{ A \in M_{n \times n}(\mathbb{R}) : -A = A^T \} \). Then

\[
U \cap V = \{0\}
\]

since \(A = A^T \) and \(-A = A^T \Rightarrow A = -A \Rightarrow A = 0 \).
More examples of intersections

- Let $F(\mathbb{R}) = \{ f \mid f : \mathbb{R} \to \mathbb{R} \}$, $E = \{ f \in F(\mathbb{R}) : f(-x) \equiv f(x) \}$ and $O = \{ f \in F(\mathbb{R}) : f(-x) \equiv -f(x) \}$. Both E and O are subspaces of $F(\mathbb{R})$. Their intersection is

 $$E \cap O = \{0\}.$$

If $f(x) \in E \cap O$, then $f(-x) = f(x)$ and $f(-x) = -f(x)$ for all $x \Rightarrow f(x) \equiv -f(x)$, i.e., $f(x) \equiv 0$.

- Let $U = \{ A \in M_{n \times n}(\mathbb{R}) : A = A^T \}$ and $V = \{ A \in M_{n \times n}(\mathbb{R}) : -A = A^T \}$. Then

 $$U \cap V = \{0\}$$

since $A = A^T$ and $-A = A^T \Rightarrow A = -A \Rightarrow A = 0$.
More examples of intersections

- Let $F(\mathbb{R}) = \{ f : \mathbb{R} \rightarrow \mathbb{R} \}$, $E = \{ f \in F(\mathbb{R}) : f(-x) \equiv f(x) \}$ and $O = \{ f \in F(\mathbb{R}) : f(-x) \equiv -f(x) \}$. Both E and O are subspaces of $F(\mathbb{R})$. Their intersection is

$$E \cap O = \{ 0 \}.$$

- If $f(x) \in E \cap O$, then $f(-x) = f(x)$ and $f(-x) = -f(x)$ for all $x \Rightarrow f(x) \equiv -f(x)$, i.e., $f(x) \equiv 0$.

- Let $U = \{ A \in M_{n \times n}(\mathbb{R}) : A = A^T \}$ and $V = \{ A \in M_{n \times n}(\mathbb{R}) : -A = A^T \}$. Then

$$U \cap V = \{ 0 \}$$

since $A = A^T$ and $-A = A^T \Rightarrow A = -A \Rightarrow A = 0$.
The union $V_1 \cup V_2$ of two subspaces of V is not a subspace unless $V_1 \subseteq V_2$ or $V_2 \subseteq V_1$.

For example, let $V_1 = \{(x, y) : y = 0\}$ and $V_2 = \{(x, y) : x = 0\}$ and $V_1 \cup V_2$ is not a subspace of \mathbb{R}^2 since $v_1 = (1, 0) \in V_1$ and $v_2 = (0, 1) \in V_2$ but $v_1 + v_2 \notin V_1 \cup V_2$. However, Span($V_1 \cup V_2$) is a subspace.

Definition

Let S be a subset of V. Then the span $\text{Span}(S)$ of S is the set consisting of

$$a_1 v_1 + a_2 v_2 + \ldots + a_n v_n$$

for all $v_1, v_2, \ldots, v_n \in S$ and $a_1, a_2, \ldots, a_n \in \mathbb{R}$, i.e., all linear combinations of vectors in S. Also set $\text{Span}(\emptyset) = \{0\}$.
The union $V_1 \cup V_2$ of two subspaces of V is not a subspace unless $V_1 \subset V_2$ or $V_2 \subset V_1$.

For example, let $V_1 = \{(x, y) : y = 0\}$ and $V_2 = \{(x, y) : x = 0\}$ and $V_1 \cup V_2$ is not a subspace of \mathbb{R}^2 since $v_1 = (1, 0) \in V_1$ and $v_2 = (0, 1) \in V_2$ but $v_1 + v_2 \notin V_1 \cup V_2$. However, Span($V_1 \cup V_2$) is a subspace.

Let S be a subset of V. Then the span Span(S) of S is the set consisting of

$$a_1 v_1 + a_2 v_2 + \ldots + a_n v_n$$

for all $v_1, v_2, \ldots, v_n \in S$ and $a_1, a_2, \ldots, a_n \in \mathbb{R}$, i.e., all linear combinations of vectors in S. Also set Span(\emptyset) = \{0\}.
Subspaces spanned by subsets

Theorem

The union $V_1 \cup V_2$ of two subspaces of V is not a subspace unless $V_1 \subset V_2$ or $V_2 \subset V_1$.

For example, let $V_1 = \{(x, y) : y = 0\}$ and $V_2 = \{(x, y) : x = 0\}$ and $V_1 \cup V_2$ is not a subspace of \mathbb{R}^2 since $v_1 = (1, 0) \in V_1$ and $v_2 = (0, 1) \in V_2$ but $v_1 + v_2 \notin V_1 \cup V_2$. However, Span($V_1 \cup V_2$) is a subspace.

Definition

Let S be a subset of V. Then the span Span(S) of S is the set consisting of

$$a_1 v_1 + a_2 v_2 + \ldots + a_n v_n$$

for all $v_1, v_2, \ldots, v_n \in S$ and $a_1, a_2, \ldots, a_n \in \mathbb{R}$, i.e., all linear combinations of vectors in S. Also set Span(\emptyset) = $\{0\}$.
Theorem

Span(S) is the smallest subspace of V containing S. That is, if W is a subspace of V and S ⊂ W, then Span(S) ⊂ W.

Proof that Span(S) is a subspace.

For \(u, v ∈ \text{Span}(S) \), let

\[
 u = a_1 u_1 + a_2 u_2 + ... + a_n u_n \quad \text{and} \quad v = b_1 v_1 + b_2 v_2 + ... + b_m v_m
\]

for \(a_i, b_j ∈ \mathbb{R} \) and \(u_i, v_j ∈ S \). Then

\[
 u + cv = a_1 u_1 + a_2 u_2 + ... + a_n u_n \\
 + cb_1 v_1 + cb_2 v_2 + ... + cb_m v_m ∈ \text{Span}(S).
\]
Theorem

Span(S) is the smallest subspace of V containing S. That is, if W is a subspace of V and S ⊂ W, then Span(S) ⊂ W.

Proof that Span(S) is a subspace.

For u, v ∈ Span(S), let

\[u = a_1 u_1 + a_2 u_2 + \ldots + a_n u_n \]

and

\[v = b_1 v_1 + b_2 v_2 + \ldots + b_m v_m \]

for \(a_i, b_j \in \mathbb{R} \) and \(u_i, v_j \in S \). Then

\[u + cv = a_1 u_1 + a_2 u_2 + \ldots + a_n u_n + cb_1 v_1 + cb_2 v_2 + \ldots + cb_m v_m \in \text{Span}(S). \]
Proof that \(\text{Span}(S) \) is the smallest subspace containing \(S \).

Let \(W \subset V \) be a subspace with \(S \subset W \). Then

\[
a_1 u_1 + a_2 u_2 + \ldots + a_n u_n \in W
\]

for all \(a_1, a_2, \ldots, a_n \in \mathbb{R} \) and \(u_1, u_2, \ldots, u_n \in S \) since \(u_1, u_2, \ldots, u_n \in W \) and \(W \) is a subspace. So \(\text{Span}(S) \subset W \).

Or equivalently,

\[
\text{Span}(S) = \bigcap_{S \subset W \subset V \text{ subspace}} W
\]
Proof that $\text{Span}(S)$ is the smallest subspace containing S.

Let $W \subset V$ be a subspace with $S \subset W$. Then

$$a_1 u_1 + a_2 u_2 + \ldots + a_n u_n \in W$$

for all $a_1, a_2, \ldots, a_n \in \mathbb{R}$ and $u_1, u_2, \ldots, u_n \in S$ since $u_1, u_2, \ldots, u_n \in W$ and W is a subspace. So $\text{Span}(S) \subset W$. □

Or equivalently,

$$\text{Span}(S) = \bigcap_{S \subset W, W \subset V \text{ subspace}} W$$
Sum of two subspaces

Definition

The sum of two subspaces \(V_1 \) and \(V_2 \) of \(V \) is

\[
V_1 + V_2 = \{ v_1 + v_2 : v_1 \in V_1, v_2 \in V_2 \}
\]

Theorem

Let \(V_1 \) and \(V_2 \) be two subspaces of \(V \). Then

\[
V_1 + V_2 = \text{Span}(V_1 \cup V_2).
\]

For example, let \(V_1 = \{ (x, y) : y = 0 \} \) and \(V_2 = \{ (x, y) : x = 0 \} \). Then

\[
\text{Span}(V_1 \cup V_2) = V_1 + V_2 = \mathbb{R}^2.
\]
Sum of two subspaces

Definition

The sum of two subspaces V_1 and V_2 of V is

$$V_1 + V_2 = \{ v_1 + v_2 : v_1 \in V_1, v_2 \in V_2 \}$$

Theorem

Let V_1 and V_2 be two subspaces of V. Then

$$V_1 + V_2 = \text{Span}(V_1 \cup V_2).$$

For example, let $V_1 = \{(x, y) : y = 0\}$ and $V_2 = \{(x, y) : x = 0\}$. Then

$$\text{Span}(V_1 \cup V_2) = V_1 + V_2 = \mathbb{R}^2.$$
Sum of two subspaces

Definition

The sum of two subspaces V_1 and V_2 of V is

$$V_1 + V_2 = \{v_1 + v_2 : v_1 \in V_1, v_2 \in V_2\}$$

Theorem

Let V_1 and V_2 be two subspaces of V. Then

$$V_1 + V_2 = \text{Span}(V_1 \cup V_2).$$

For example, let $V_1 = \{(x, y) : y = 0\}$ and $V_2 = \{(x, y) : x = 0\}$. Then

$$\text{Span}(V_1 \cup V_2) = V_1 + V_2 = \mathbb{R}^2.$$
Examples of Span(S)

Let $S = \{1, x, x^2, \ldots, x^n\} \subset \mathbb{R}[x]$. Then

$$\text{Span}(S) = \{a_0 + a_1 x + \ldots + a_n x^n\} = \{f(x) : \deg f(x) \leq n\}$$

Let $S = \{x^2 + y^2 = 1\}$. Then $(1, 0) \in S$ and $(0, 1) \in S$ so

$$\text{Span}(S) \supset \text{Span}\{(1, 0), (0, 1)\} = \mathbb{R}^2$$

and hence $\text{Span}(S) = \mathbb{R}^2$.
Examples of \(\text{Span}(S) \)

- Let \(S = \{1, x, x^2, \ldots, x^n\} \subset \mathbb{R}[x] \). Then
 \[
 \text{Span}(S) = \{a_0 + a_1 x + \ldots + a_n x^n\} \\
 = \{f(x) : \deg f(x) \leq n\}
 \]

- Let \(S = \{x^2 + y^2 = 1\} \). Then \((1, 0) \in S\) and \((0, 1) \in S\) so
 \[
 \text{Span}(S) \supset \text{Span}\{(1, 0), (0, 1)\} = \mathbb{R}^2
 \]
 and hence \(\text{Span}(S) = \mathbb{R}^2 \).
More examples

Let $V_0 = \{ f(x) | f(0) = 0 \}$ and $V_1 = \{ f(x) | f(1) = 0 \}$ be subspaces of $F(\mathbb{R})$. Let

$$h(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x \neq 0 \end{cases}$$

Then for every $g(x) \in F(\mathbb{R})$,

$$g(x) = g(1)h(x) + (g(x) - g(1)h(x))$$

$$\in V_0 + \overline{V_1}$$

Therefore,

$$\text{Span}(V_0 \cup V_1) = V_0 + V_1 = F(\mathbb{R}).$$
Span(S) for $S \subset \mathbb{R}^n$

Let $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m$ be m vectors in \mathbb{R}^n, represented by row vectors. Let A be the $m \times n$ matrix

$$A = \begin{bmatrix}
\mathbf{v}_1 \\
\mathbf{v}_2 \\
\vdots \\
\mathbf{v}_m
\end{bmatrix}.$$

Then the row space

$$\text{Row}(A) = \text{Span}(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m)$$

the subspace of \mathbb{R}^n spanned by the rows of A. Similarly, the column space $\text{Col}(A)$ is the subspace spanned by the columns of A. Clearly, $\text{Row}(A) = \text{Col}(A^T)$.
Let \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \) be \(m \) vectors in \(\mathbb{R}^n \), represented by row vectors. Let \(A \) be the \(m \times n \) matrix
\[
A = \begin{bmatrix}
\mathbf{v}_1 \\
\mathbf{v}_2 \\
\vdots \\
\mathbf{v}_m
\end{bmatrix}.
\]

Then the row space
\[
\text{Row}(A) = \text{Span}(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m)
\]
the subspace of \(\mathbb{R}^n \) spanned by the rows of \(A \). Similarly, the column space \(\text{Col}(A) \) is the subspace spanned by the columns of \(A \). Clearly, \(\text{Row}(A) = \text{Col}(A^T) \).
Theorem

Let A be an $m \times n$ matrix. Then

$$\text{Row}(A) = \text{Row}(BA)$$

for all nonsingular $m \times m$ matrices B.

Proof.

Let

$$A = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix}$$

and

$$B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mm} \end{bmatrix}.$$
Row(A) under row operations

Theorem
Let A be an $m \times n$ matrix. Then

$$\text{Row}(A) = \text{Row}(BA)$$

for all nonsingular $m \times m$ matrices B.

Proof.
Let

$$A = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mm} \end{bmatrix}.$$

Then
Subspace \text{Span}

Row(A)

Cont.

\[BA = \begin{bmatrix}
 b_{11}v_1 + b_{12}v_2 + \ldots + b_{1m}v_m \\
 b_{21}v_1 + b_{22}v_2 + \ldots + b_{2m}v_m \\
 \vdots \\
 b_{m1}v_1 + b_{m2}v_2 + \ldots + b_{mm}v_m
\end{bmatrix}. \]

Since \(b_{i1}v_1 + b_{i2}v_2 + \ldots + b_{im}v_m \in \text{Span}(v_1, v_2, \ldots, v_m) \),

\[\text{Row}(BA) \subset \text{Row}(A) \text{ for all } A \text{ and } B. \]

Let \(A' = BA \). Since \(B \) is nonsingular, \(A = B^{-1}A' \). So

\[\text{Row}(B^{-1}A') \subset \text{Row}(A') \iff \text{Row}(A) \subset \text{Row}(BA). \]

We conclude that \(\text{Row}(A) = \text{Row}(BA) \). \[\square \]
Remarks on $\text{Row}(A) = \text{Row}(BA)$

- Similarly, $\text{Col}(AB) = \text{Col}(A)$ for all $n \times n$ nonsingular matrices B.

- Let A' be a matrix in row echelon form obtained from A by row reduction. Then $\text{Row}(A) = \text{Row}(A')$, e.g.,

\[
\begin{bmatrix}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} = \mathbb{R}^3
\]

- $\text{Row}(A) = \mathbb{R}^n$ if and only if $\text{rank}(A) = n$, i.e., A has full rank.

- If $A \in M_{n \times n}(\mathbb{R})$, A is nonsingular if and only if $\text{Row}(A) = \mathbb{R}^n$ ($\text{Col}(A) = \mathbb{R}^n$), i.e., the row (column) vectors of A span \mathbb{R}^n.
Similarly, $\text{Col}(AB) = \text{Col}(A)$ for all $n \times n$ nonsingular matrices B.

Let A' be a matrix in row echelon form obtained from A by row reduction. Then $\text{Row}(A) = \text{Row}(A')$, e.g.,

$$\text{Row} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix} = \text{Row} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbb{R}^3$$

$\text{Row}(A) = \mathbb{R}^n$ if and only if $\text{rank}(A) = n$, i.e., A has full rank.

If $A \in M_{n \times n}(\mathbb{R})$, A is nonsingular if and only if $\text{Row}(A) = \mathbb{R}^n$ ($\text{Col}(A) = \mathbb{R}^n$), i.e., the row (column) vectors of A span \mathbb{R}^n.

Xi Chen

Linear Algebra II Lecture 3
Remarks on $\text{Row}(A) = \text{Row}(BA)$

- Similarly, $\text{Col}(AB) = \text{Col}(A)$ for all $n \times n$ nonsingular matrices B.

- Let A' be a matrix in row echelon form obtained from A by row reduction. Then $\text{Row}(A) = \text{Row}(A')$, e.g.,

$$\text{Row} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix} = \text{Row} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbb{R}^3$$

- $\text{Row}(A) = \mathbb{R}^n$ if and only if $\text{rank}(A) = n$, i.e., A has full rank.

- If $A \in M_{n \times n}(\mathbb{R})$, A is nonsingular if and only if $\text{Row}(A) = \mathbb{R}^n$ ($\text{Col}(A) = \mathbb{R}^n$), i.e., the row (column) vectors of A span \mathbb{R}^n.
Remarks on Row(A) = Row(BA)

- Similarly, Col(AB) = Col(A) for all $n \times n$ nonsingular matrices B.

- Let A' be a matrix in row echelon form obtained from A by row reduction. Then Row(A) = Row(A'), e.g.,

 \[
 \begin{bmatrix}
 1 & 2 & 3 \\
 2 & 3 & 1 \\
 3 & 1 & 2 \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 \end{bmatrix}
 = \mathbb{R}^3
 \]

- Row(A) = \mathbb{R}^n if and only if rank(A) = n, i.e., A has full rank.

- If $A \in M_{n \times n}(\mathbb{R})$, A is nonsingular if and only if Row(A) = \mathbb{R}^n (Col(A) = \mathbb{R}^n), i.e., the row (column) vectors of A span \mathbb{R}^n.