Linear Algebra II Lecture 2

Xi Chen

University of Alberta

September 8, 2014
Outline

1. Vector Space
2. Subspace
Definition of Vector Space

Definition. A real (\(\mathbb{R}\)-) vector space (or a vector space over \(\mathbb{R}\)) is a set \(V\) equipped with two operations

- vector addition: \(u + v \in V\) for \(u, v \in V\) (\(+ : V \times V \to V\))
- scalar multiplication: \(cu \in V\) for \(c \in \mathbb{R}\) and \(u \in V\) (\(\cdot : \mathbb{R} \times V \to V\)).

More precisely, we call \((V, +, \cdot)\) a vector space over \(\mathbb{R}\) if

- vector addition + is commutative and associative:
 1. \(u + v = v + u\) for all \(u, v \in V\)
 2. \((u + v) + w = u + (v + w)\) all \(u, v, w \in V\)
Definition of Vector Space Cont.

- there is a zero vector \(0 \in V\) satisfying
 \[u + 0 = u\] and \(0u = 0\) for all \(u \in V\).
- scalar multiplication is associative:
 \[(ab)u = a(bu)\] for all \(a, b \in \mathbb{R}, u \in V\).
- vector addition and scalar multiplication are distributive:
 \[(a + b)u = au + bu\] and \(a(u + v) = au + av\)
 for all \(a, b \in \mathbb{R}, u \in V\).
- \(1u = u\) for all \(u \in V\).
Examples of Vector Spaces

- \(\mathbb{R}^n \)
- \(\mathbb{R}[x] = \{ f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n : a_0, a_1, \ldots, a_n \in \mathbb{R} \} \)
- the set \(F(\mathbb{R}) \) of the functions \(f : \mathbb{R} \to \mathbb{R} \)
- the set \(F(D) \) of the functions \(f : D \to \mathbb{R} \)
- the set \(M_{m \times n}(\mathbb{R}) \) of \(m \times n \) matrices with real entries
Examples of non vector spaces

- \mathbb{R}^2 with scalar multiplication \ast defined by

 $$c \ast (x, y) = (cx, c^2 y)$$

 Then $(\mathbb{R}^2, +, \ast)$ is not a vector space because distributive law fails:

 $$(a + b) \ast (x, y) = ((a + b)x, (a + b)^2 y)$$

 $$a \ast (x, y) + b \ast (x, y) = (ax, a^2 y) + (bx, b^2 y)$$

 $$= ((a + b)x, (a^2 + b^2)y)$$

 $$\Rightarrow (a + b) \ast (x, y) \not\equiv a \ast (x, y) + b \ast (x, y).$$
Examples of non vector spaces Cont.

- \(\mathbb{R} \) with vector addition \(\oplus \) defined by

\[
x_1 \oplus x_2 = 2x_1 + 2x_2
\]

Then \((\mathbb{R}, \oplus, \cdot)\) is not a vector space because associative law fails:

\[
(x_1 \oplus x_2) \oplus x_3 = (2x_1 + 2x_2) \oplus x_3 = 4x_1 + 4x_2 + 2x_3
\]

\[
x_1 \oplus (x_2 \oplus x_3) = x_1 \oplus (2x_2 + 2x_3) = 2x_1 + 4x_2 + 4x_3
\]

\[
\Rightarrow (x_1 \oplus x_2) \oplus x_3 \not\equiv x_1 \oplus (x_2 \oplus x_3).
\]
Definition of Subspace

Definition A. A (linear/vector) subspace W of a vector space V (over \mathbb{R}) is a subset of V which is itself a vector space (over \mathbb{R}) under the vector addition and scalar multiplication on V.

Definition B. A non-empty subset $W \subset V$ of a vector space V over \mathbb{R} is a subspace if

- W is closed under vector addition: $w_1 + w_2 \in W$ for all $w_1, w_2 \in W$;
- W is closed under scalar multiplication: $cw \in W$ for all $w \in W$ and all $c \in \mathbb{R}$.

Definition C. A non-empty subset $W \subset V$ of a vector space V over \mathbb{R} is a subspace if

- $w_1 + cw_2 \in W$ for all $w_1, w_2 \in W$ and all $c \in \mathbb{R}$.
Theorem (Definition B \iff Definition C)

Let V be a vector space over \mathbb{R} and W be a non-empty subset of V. Then

$$w_1 + w_2 \in W, cw_2 \in W \text{ for all } w_1, w_2 \in W \text{ and } c \in \mathbb{R}$$

if and only if $w_1 + cw_2 \in W \text{ for all } w_1, w_2 \in W \text{ and } c \in \mathbb{R}$.

Remark. To prove that Statement P \iff Statement Q, one has to prove that P \implies Q and Q \implies P.
Proof of Definition B ⇔ Definition C

Proof of ⇒.

\[w_2 \in W, \; c \in \mathbb{R} \Rightarrow cw_2 \in W \]
\[w_1 \in W \]
\[\Rightarrow w_1 + cw_2 \in W \]

Proof of ⇐.

\[w_1 + cw_2 \in W \Rightarrow w_1 + w_2 \in W \] by setting \(c = 1 \)

It remains to prove that \(cw_2 \in W \) for all \(w_2 \in W \) and \(c \in \mathbb{R}. \)
\[W \neq \emptyset \Rightarrow \text{there is } w \in W \Rightarrow w + (-1)w = 0 \in W \Rightarrow \]
\[0 + cw_2 = cw_2 \in W. \]
Examples of subspaces

- $N_A = \{ \mathbf{x} : A\mathbf{x} = 0 \} \subset \mathbb{R}^n$, where A is an $m \times n$ matrix, e.g.,

\[
\{(x, y) : 3x + 4y = 0\} = \left\{(x, y) : \begin{bmatrix} 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}\right\}
\]

\[
\{(x, y, z) : x - y + z = 3x + 4y + 5z = 0\}
= \left\{(x, y, z) : \begin{bmatrix} 1 & -1 & 1 \\ 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}\right\}
\]

N_A is called null space of A. It is a subspace of \mathbb{R}^n since $0 \in N_A$ and

\[
A\mathbf{x}_1 = A\mathbf{x}_2 = 0 \Rightarrow A(\mathbf{x}_1 + c\mathbf{x}_2) = 0
\]
More examples of subspaces

- \(R_A = \{Ax : x \in \mathbb{R}^n\} \) is a subspace of \(\mathbb{R}^m \) since \(0 \in R_A \) and
 \[
 Ax_1 + cAx_2 = A(x_1 + cx_2) \in R_A.
 \]

- \(\mathbb{R}_{\leq n}[x] = \{f(x) \in \mathbb{R}[x] : \deg f(x) \leq n\} \) is a subspace of \(\mathbb{R}[x] \) since \(0 \in \mathbb{R}_{\leq n}[x] \) and
 \[
 \deg f \leq n, \deg g \leq n \Rightarrow \deg(f + cg) \leq n.
 \]

- \(W = \{f(x) \in \mathbb{R}[x] : f(x_1) = f(x_2) = ... = f(x_n) = 0\} \) is a subspace of \(\mathbb{R}[x] \) since \(0 \in W \) and
 \[
 \begin{aligned}
 f(x_1) = f(x_2) = ... = f(x_n) &= 0 \\
 g(x_1) = g(x_2) = ... = g(x_n) &= 0
 \end{aligned}
 \]
 \[
 \Rightarrow (f + cg)(x_1) = (f + cg)(x_2) = ... = (f + cg)(x_n) = 0
 \]
More examples of subspaces

- \(C(\mathbb{R}) = \{ f \mid f : \mathbb{R} \rightarrow \mathbb{R} \text{ continuous} \} \) is a subspace of \(F(\mathbb{R}) = \{ f \mid f : \mathbb{R} \rightarrow \mathbb{R} \} \) since \(0 \in C(\mathbb{R}) \) and

 \[
 f(x) \text{ and } g(x) \text{ are continuous on } \mathbb{R} \\
 \Rightarrow f(x) + cg(x) \text{ is continuous on } \mathbb{R}.
 \]

- \(C^1(\mathbb{R}) = \{ f : \mathbb{R} \rightarrow \mathbb{R} \mid f'(x) \text{ exists and is continuous} \} \) is a subspace of both \(C(\mathbb{R}) \) and \(F(\mathbb{R}) \) since \(0 \in C^1(\mathbb{R}) \) and

 \[
 f'(x) \text{ and } g'(x) \text{ exist and are continuous} \\
 \Rightarrow (f(x) + cg(x))' \text{ exists and is continuous}.
 \]
Even more examples of subspaces

- \(W = \{ A \in M_{n \times n}(\mathbb{R}) : A = A^T \} \) is a subspace of \(M_{n \times n} \) since \(0 \in W \) and

\[
A = A^T, B = B^T \Rightarrow (A + cB)^T = A^T + cB^T = A + cB
\]

- \(W = \{ A \in M_{n \times n}(\mathbb{R}) : -A = A^T \} \) is a subspace of \(M_{n \times n} \) since \(0 \in W \) and

\[
-A = A^T, -B = B^T \Rightarrow (A + cB)^T = A^T + cB^T = -(A + cB).
\]

- \(U = \{ A = [a_{ij}]_{m \times n} : a_{ij} = 0 \text{ for all } i > j \} \) is a subspace of \(M_{m \times n}(\mathbb{R}) \) since \(0 \in U \) and

\[
A = [a_{ij}], B = [b_{ij}] \in U \Rightarrow a_{ij} = b_{ij} = 0 \text{ for all } i > j
\]
\[
\Rightarrow a_{ij} + cb_{ij} = 0 \text{ for all } i > j \Rightarrow A + cB \in U.
\]