(1) Let $a_n \in \mathbb{R}^+$ for all $n \in \mathbb{Z}^+$. If $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} a_n^b$ converges for all $b \geq 1$.

(2) Find the radius of convergence of the following power series:

(a) $\sum_{n=0}^{\infty} 2^n x^n$;

(b) $\sum_{n=0}^{\infty} n^2 x^n$.

(3) Let S be a set in \mathbb{R}^n. Show that

(a) $\{(x, y) : x + y \in S\}$ is an open set in \mathbb{R}^{2n} if S is open in \mathbb{R}^n;

(b) $\{(x, y) : x - y \in S\}$ is a closed set in \mathbb{R}^{2n} if S is closed in \mathbb{R}^n.

(4) We call a function $f : S \to \mathbb{R}^n$ locally constant if for every point $p \in S$, there is $r > 0$ such that f is constant in $S \cap B_r(p)$, i.e., $f(x_1) = f(x_2)$ for all $x_1, x_2 \in S \cap B_r(p)$, where S is a set in \mathbb{R}^m. Show that locally constant functions are continuous.

(5) Show that a set $S \subset \mathbb{R}^n$ is connected if and only if every locally constant function $f : S \to \mathbb{R}$ is constant.
Math 217 Assignment #8
Due Nov. 15, 2010

(1) Let \(f : S \to \mathbb{R}^n \) and \(g : S \to \mathbb{R}^n \) be two continuous functions defined on a set \(S \subset \mathbb{R}^m \). If there is a dense subset \(D \subset S \) (i.e. \(\overline{D} \supset S \)) such that \(f(x) = g(x) \) for every \(x \in D \), then \(f(x) = g(x) \) for all \(x \in S \).

(2) We call a function \(f : S \to \mathbb{R} \) upper semi-continuous if
\[
 f^{-1}((\infty, c)) = f^{-1}(\{y < c\})
\]
is open in \(S \) for all \(c \in \mathbb{R} \). Similarly, \(f \) is lower semi-continuous if \(f^{-1}((c, \infty)) \) is open in \(S \) for all \(c \in \mathbb{R} \). Show that \(f \) is upper semi-continuous if and only if
\[
 \limsup_{x \to x_0} f(x) \leq f(x_0)
\]
for all \(x_0 \in S \); similarly, \(f \) is lower semi-continuous if and only if
\[
 \liminf_{x \to x_0} f(x) \geq f(x_0)
\]
for all \(x_0 \in S \).

(3) Show that a function \(f : S \to \mathbb{R} \) is continuous if and only if it is both upper and lower semi-continuous.

(4) Let \(f : \mathbb{R} \to \mathbb{R} \) be a function with the property that
\[
 f(x + y) = f(x) + f(y)
\]
for all \(x, y \in \mathbb{R} \). If \(f(x) \) is continuous at 0, then \(f(x) \equiv cx \) for some constant \(c \in \mathbb{R} \).

(5) We use the notation \(\lfloor x \rfloor \) to denote the largest integer \(\leq x \).
 (a) Find all discontinuities of \(\lfloor cx \rfloor \) for a constant \(c \neq 0 \).
 (b) Show that the infinite series
\[
 \sum_{n=1}^{\infty} \frac{nx - \lfloor nx \rfloor}{2^n}
\]
converges for all \(x \in \mathbb{R} \).
 (c) Let \(f(x) \) be the function defined by the series in (b). Show that \(f(x) \) is continuous at every \(x \notin \mathbb{Q} \) and discontinuous at every \(x \in \mathbb{Q} \).