MATHEMATICS 113 (A1)
Final Examination

Fall 2010

Date: Monday, December 13, 2010

Time: 2 Hours

LAST NAME: ___________________ FIRST NAME: ___________________
(Please, print)

I.D.: __

Instructions

1. Books, notes or calculators are not permitted.
2. Show all your work.
3. Make sure your examination paper has 6 questions.

<table>
<thead>
<tr>
<th>Question</th>
<th>Value</th>
<th>Your Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. (20 points)

(a) Find an equation of the tangent line to the curve
\[x^3 + y^3 - 9xy = 0 \]
at the point \(P(2, 4) \).
Answer: \(y = \frac{4}{5}x + 12/5 \)

(b) If \(f''(t) = t^3 + 4t - 5 \) and \(f'(0) = 1, f(0) = -2 \) find \(f(t) \).
Answer: \(f(t) = \frac{t^5}{50} + \frac{2t^3}{3} - \frac{5t^2}{2} + t - 2 \)

(c) Find \(g'(-\frac{\pi}{4}) \) if \(g(x) = \cos x + \int_{\tan x}^{1} \sin(1 + t^3)dt \).
Answer: \(g'(-\frac{\pi}{4}) = 1/\sqrt{2} \)

(d) Find the critical numbers of \(f(x) = x^4(x - 9) \).
\(x = 0, x = 4 \)

(e) Find the absolute maximum and absolute minimum values of the function \(f(x) = 3x^5 - 5x^3 \) on the interval \([-2, 2]\).
Answer: Abs.Max. \(f(2) = 56 \) Abs.min. \(f(-2) = -56 \)

2. (20 points) The function \(f \) is defined by \(f(x) = \frac{x(x - 3)}{(x + 3)^2} \). Its first and second derivatives are
\[f'(x) = \frac{9x - 9}{(x + 3)^3}, \quad f''(x) = \frac{-18x + 54}{(x + 3)^4}. \]
Find each of the following:

(a) The domain of \(f \) and intercepts with \(x \) and \(y \) axes.
(b) The intervals where \(f \) is increasing and where \(f \) is decreasing.
(c) Local extreme values of \(f \), if any.
(d) Intervals where \(f \) is concave upward and concave downward and inflection points.
(e) All asymptotes
(f) Sketch the graph of \(f \).

Answers: (a) \((-\infty, -3) \cup (-3, \infty), (0, 0), (3, 0)\)
(b) \(f \) increases on \((-\infty, -3) \cup (1, \infty)\) \(f \) decreases on \((-3, 1)\)
(c) local min \(f(1) = -1/8 \).
(d) \(f \) concave upward on \((-\infty, -3) \cup (-3, 3), f \) concave downward on \((3, \infty)\); inflection point \((3, 0) \)
(e) \(x = -3 \) V.A. \(y = 1 \) H.A.
3. (10 points) The function f is defined by $f(x) = \sqrt{x+3}$.
 (a) Find the linearization of f at $x = 0$.
 Answer: $L(x) = \sqrt{3} + \frac{1}{2\sqrt{3}}x$
 (b) Find the point(s) on the graph of f where the tangent line is parallel to the secant line through $(-3,0)$ and $(6,3)$.
 Answer: $P(-3/4,3/2)$

4. (20 points) Evaluate the following integrals:
 (a) $\int \frac{1}{x^2} \sin\left(\frac{1}{x}\right) \cos\left(\frac{1}{x}\right) dx$,
 (b) $\int \frac{1}{(2x+3)^2} dx$,
 (c) $\int_0^1 18x^3(3x^2 + 1)^{\frac{1}{2}} dx$,
 (d) $\int_0^{\pi/2} |\sin x| dx$.

 Answer: (a) $-\frac{\sin^2(\frac{1}{x})}{2} + C$
 (b) $-\frac{1}{2(2x+3)} + C$
 (c) $\frac{116}{15}$
 (d) $3 - \frac{1}{\sqrt{2}}$

5. (10 points) Suppose a camera is filming the launch of a rocket from 10km away from a launching pad. The rocket is traveling vertically. At certain moment, the angle between the camera and the ground is equal $\pi/3$ and is changing at the rate $0.5 rad/min$. What is the rocket’s velocity at that moment?
 Answer: $20 km/min$

6. (20 points)
 (a) Use the definition of the definite integral as the limit of the Riemann sum to evaluate
 $\int_0^3 [4 - (x - 2)^2] dx$.

 Hint: $\sum_{i=1}^{n} i = \frac{n(n + 1)}{2}$, $\sum_{i=1}^{n} i^2 = \frac{n(n + 1)(2n + 1)}{6}$.
(b) Evaluate the integral \(\int_{0}^{3} [4 - (x - 2)^2] dx \) using Part 2 of the Fundamental Theorem of Calculus.

(c) Draw a diagram to explain the geometric meaning of the integral in part (a).

Answer: 9