1. No books, notes, calculators or cell phones are allowed.

2. Show your work in details.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. (20 pts)

(a) Find the domain of the function

\[f(x) = \sqrt{\frac{x + 1}{x - 2}} \]

(b) Let \(g(x) = f(\cos x) \). Find \(g'(\pi/3) \) if \(f(1/2) = 2 \) and \(f'(1/2) = 3 \).

(c) Find horizontal and vertical asymptotes of \(f(x) = \frac{1 + 2x}{2x - 1} \). Justify your answer.
2. (20 pts) Evaluate the limit or explain why the limit does not exist:

(a)
\[\lim_{x \to -\infty} \frac{\sqrt{x^4 - 16}}{4 - x^2} \]

(b)
\[\lim_{x \to \infty} \frac{\sin x}{x} \]

(c)
\[\lim_{x \to 0} \frac{\sin(3x)}{\sin(2x)} \]
3. (20 pts) Find all possible values of a and b so that the function

$$f(x) = \begin{cases} x + 2b, & x < 2 \\ bx^2 - a, & x \geq 2 \end{cases}$$

is differentiable everywhere on $(-\infty, \infty)$. Justify your answer.
4. (20 pts) Consider the function \(y = f(x) = \sqrt{2x - 1} \).

(a) Use the definition of the derivative to find \(f'(x) \) and state the domain for \(f \) and \(f' \). NOTE: No marks will be given if the definition is not used.

(b) Find an equation of the tangent line to the graph of \(f \) at the point \((a, f(a))\) where \(a = 5 \).
5. (20 pts) Calculate each of the following; you do not need to simplify your answer.

(a) \(f'(x) \) if \(f(x) = \sec(\cot(x^3)) \).

(b) \(g''(x) \) if \(g(x) = \frac{2x-1}{x^2} \).

(c) \(h'(x) \) if \(h(x) = e^{2x^2-1}\sqrt{x^2-1} \).