MATHEMATICS 113/114
Midterm Examination, Version 3

Fall 2011

Date: Wednesday, October 26, 2011
Time: 50 minutes

LAST NAME: ___________________ FIRST NAME: ___________________

(Please, print!)

Please, check your section/instructor!

<table>
<thead>
<tr>
<th>Section</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 113, E1</td>
<td>E. Osmanagic</td>
</tr>
<tr>
<td>Math 114, D1</td>
<td>X. Chen</td>
</tr>
</tbody>
</table>

Instructions

1. Books, notes or calculators are not permitted.
2. Show all your work.
3. Make sure your examination paper has 5 questions.
Instructions

1. Books, notes or calculators are not permitted.
2. Show all your work.
3. Make sure your examination paper has 5 questions.

<table>
<thead>
<tr>
<th>Question</th>
<th>Value</th>
<th>Your Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. (20 points)

(a) Find the domain of f if $f(x) = \frac{\sqrt{8-x}}{\sqrt{x^2 - 4}}$

(b) Let $g(x) = e^{2x+1} f(x^2)$. Find $g'(2)$ if $f(4) = 2$, $f'(4) = 3$.
(c) Evaluate

\[
\lim_{{x \to 0}} \frac{\sin x}{1 - \sqrt{1 + x}}.
\]

(d) Find horizontal and vertical asymptotes of \(f(x) = \frac{2 + 3x}{2x - 1} \). Justify your answer.
2. (20 points) Evaluate the limit or explain why the limit does not exist:

(a) \[\lim_{x \to 0} \frac{\tan(2x)}{\sin(3x)}. \]

(b) \[\lim_{x \to -\infty} (\sqrt{x^2 + x} + x). \]
3. (20 points)

(a) Find all possible values of \(a \) and \(b \) so that the function

\[
f(x) = \begin{cases}
 x + 2b, & x < 1 \\
 bx^2 - a, & 1 \leq x \leq 2 \\
 4x + 1, & x > 2
\end{cases}
\]

is continuous at every \(x \). Justify your answer.

(b) Differentiate:

\[f(x) = \cos(\sin(\sin(x^2))). \]
4. (20 points) Consider the function \(y = f(x) = \frac{1}{\sqrt{x-2}} \).

(a) Use the definition of the derivative to find \(f'(x) \) and state the domain for \(f \) and \(f' \). NOTE: No marks will be given if the definition is not used.

(b) Find an equation of the normal line to the graph of \(f \) at the point \((a, f(a))\) where \(a = 4 \).
5. (20 points)

A function \(y = y(x) \) is implicitly defined by the equation:

\[
3e^y \cos x - \sin(xy) = 3.
\]

(a) Find \(\frac{dy}{dx} \).

(b) Find the slope of the tangent line to the graph of \(y = y(x) \) at the point \((2\pi, 0)\).