MATHEMATICS 113/114
Midterm Examination, Version 2

Fall 2011

Date: Wednesday, October 26, 2011
Time: 50 minutes

LAST NAME: ___________ FIRST NAME: ______________
(Please, print!)

Please, check your section/instructor!

<table>
<thead>
<tr>
<th>Section</th>
<th>Instructor</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 113, E1</td>
<td>E. Osmanagic</td>
<td></td>
</tr>
<tr>
<td>Math 114, D1</td>
<td>X. Chen</td>
<td></td>
</tr>
</tbody>
</table>

Instructions

1. Books, notes or calculators are not permitted.
2. Show all your work.
3. Make sure your examination paper has 5 questions.
Instructions

1. Books, notes or calculators are not permitted.

2. Show all your work.

3. Make sure your examination paper has 5 questions.

<table>
<thead>
<tr>
<th>Question</th>
<th>Value</th>
<th>Your Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
1. (20 points)

(a) Find the domain of f if $f(x) = \sqrt{x^2 - 4} + \sqrt{8 - x}$

Solution

$$D_f = \{ x \mid x^2 - 4 \geq 0 \text{ and } 8 - x \geq 0 \}.$$

Since

$$x^2 - 4 \geq 0 \iff x \in (-\infty, -2] \cup [2, \infty)$$

and

$$8 - x \geq 0 \iff x \in (-\infty, 8],$$

we have

$$D_f = ((-\infty, -2] \cup [2, \infty)) \cap (-\infty, 8] = (-\infty, -2] \cup [2, 8].$$

(b) Find horizontal and vertical asymptotes of $f(x) = \frac{x - 1}{2x + 1}$. Justify your answer.

Solution:

$$\lim_{x \to -\infty} \frac{x - 1}{2x + 1} = \lim_{x \to -\infty} \frac{1 - \frac{1}{x}}{2 + \frac{1}{x}} = \frac{1}{2}$$

$$\lim_{x \to \infty} \frac{x - 1}{2x + 1} = \lim_{x \to \infty} \frac{1 - \frac{1}{x}}{2 + \frac{1}{x}} = \frac{1}{2}$$

Thus, $y = 1/2$ is a horizontal asymptote as $x \to -\infty$ and as $x \to \infty$.

Note that $x = -\frac{1}{2}$ is the ”candidate” for the vertical asymptote. Since,

$$\lim_{x \to -\frac{1}{2}} \frac{x - 1}{2x + 1} = \infty, \quad \lim_{x \to -\frac{1}{2}} \frac{x - 1}{2x + 1} = -\infty$$

the line $x = -\frac{1}{2}$ is the vertical asymptote.
(c) Evaluate
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{2 \sin x} \]
Solution:
\[
\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{2 \sin x} = \frac{1}{2} \lim_{x \to 0} \left[\frac{\sqrt{1 + x} - 1}{\sin x} \cdot \frac{\sqrt{1 + x} + 1}{\sqrt{1 + x} + 1} \right] = \frac{1}{2} \lim_{x \to 0} \frac{1 + x - 1}{\sin x(\sqrt{1 + x} + 1)} = \frac{1}{2} \lim_{x \to 0} \frac{1}{\sin x} \cdot \lim_{x \to 0} \frac{1}{\sqrt{1 + x} + 1} = \frac{1}{4}
\]
(d) Let \(g(x) = e^{3x+1}f(x^3) \). Find \(g'(2) \) if \(f(8) = 1, f'(8) = 2 \).
Solution: By the Chain Rule:
\[
g'(x) = e^{3x+1}3f(x^3) + e^{3x+1}f'(x^3)3x^2 = e^{3x+1}(3f(x^3) + 3x^2 f'(x^3)).
\]
Thus,
\[
g'(2) = e^7(3f(8) + 12f'(8)) = 27e^7.
\]
2. (10 points) Consider the function \(y = f(x) = \frac{3}{\sqrt{x-2}} \).

(a) Use the definition of the derivative to find \(f'(x) \) and state the domain for \(f \) and \(f' \).

NOTE: No marks will be given if the definition is not used.

(b) Find an equation of the normal line to the graph of \(f \) at the point \((a, f(a))\) where \(a = 4 \).

Solution:

(a)

\[
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{3}{\sqrt{x+h-2}} - \frac{3}{\sqrt{x-2}} = \lim_{h \to 0} \frac{3\sqrt{x-2} - 3\sqrt{x+h-2}}{\sqrt{x+h-2}\sqrt{x-2}} = \lim_{h \to 0} \frac{x - 2 - (x + h - 2)}{h\sqrt{x+h-2} - 2\sqrt{x-2}} = \lim_{h \to 0} \frac{-h}{h\sqrt{x+h-2} - 2\sqrt{x-2}} = \lim_{h \to 0} \frac{-1}{\sqrt{x+h-2} - 2\sqrt{x-2}} = \frac{-3}{2\sqrt{x-2} - 2\sqrt{x-2}} = \frac{-3}{2\sqrt{(x-2)^3}}.
\]

The domain for \(f \) and \(f' \) is the same set, namely \((2, \infty)\).

(b) First note that \(f(4) = \frac{3\sqrt{2}}{2} \). Thus, we need the equation of the normal line at the point \((4, \frac{3\sqrt{2}}{2})\). If \(m_T \) denotes the slope of the tangent line then the slope of the normal line is \(-\frac{1}{m_T}\). On the other hand, \(m_T = f'(4) \). Since by part (a) (or by the Chain Rule, differentiating \(f(x) = 3(x - 2)^{-\frac{1}{2}} \), the derivative \(f'(x) \) of \(f \) is \(f'(x) = -\frac{3}{2}(x - 2)^{-\frac{3}{2}} \) we get \(m_T = f'(4) = -\frac{3}{4\sqrt{2}} \). Hence, the slope of the normal line is \(\frac{4\sqrt{2}}{3} \). Finally, the equation of the equation of the normal line is \(y - \frac{3\sqrt{2}}{2} = \frac{4\sqrt{2}}{3}(x - 4) \).
3. (10 points)

(a) Find all possible values of a and b so that the function

$$f(x) = \begin{cases}
 x + 2b, & x < 1 \\
 bx - a, & 1 \leq x \leq 2 \\
 4x - 4, & x > 2
\end{cases}$$

is continuous at every x. Justify your answer.

Solution: First note that f is continuous on $(-\infty, 1) \cup (1, 2) \cup (2, \infty)$ for all values of a and b as a polynomial degree one. There are two points left, $x = 1$ and $x = 2$.

For f to be continuous at $x = 1$, the following equations must hold:

$$f(1) = \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x).$$

$$f(1) = b - a$$

$$\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x + 2b) = 1 + 2b.$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (bx - a) = b - a$$

Thus

$$b - a = 1 + 2b.$$

For f to be continuous at $x = 2$, the following equations must hold:

$$f(2) = \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x).$$

$$f(2) = 2b - a$$

$$\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (bx - a) = 2b - a.$$

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (4x - 4) = 4$$

Thus

$$2b - a = 4.$$

Finally, f is continuous on the set of real numbers if $b = 1$ and $a = -2$.

(b) Differentiate:

$$f(x) = \cos(\cos(\cos(x^3))).$$

Solution: By the Chain Rule,

$$f'(x) = (-\sin(\cos(x^3)))(\cos(x^3))(\cos(\cos(x^3)))(-\sin(x^3))3x^2.$$

.$$
4. (10 points) Evaluate the limit or explain why the limit does not exist:

(a) \(\lim_{x \to 0} \frac{\sin(2x)}{\tan(3x)} \)

Solution:

\[
\lim_{x \to 0} \frac{\sin(2x)}{\tan(3x)} = \lim_{x \to 0} \frac{\sin(2x)}{\frac{\sin(3x)}{\cos(3x)}} = \lim_{x \to 0} \frac{\sin(2x)}{\sin(3x)} \cdot \lim_{x \to 0} \frac{\cos(3x)}{3x} = \lim_{x \to 0} \frac{\sin(2x)}{2} \cdot \frac{2}{3} = \frac{2}{3}
\]

(b) \(\lim_{x \to \infty} (x - \sqrt{x^2 + x}) \)

Solution:

\[
\lim_{x \to \infty} (x - \sqrt{x^2 + x}) = \lim_{x \to \infty} (x - \sqrt{x^2 + x}) \cdot \frac{x + \sqrt{x^2 + x}}{x + \sqrt{x^2 + x}} = \lim_{x \to \infty} \frac{x^2 - (x^2 + x)}{x + \sqrt{x^2 + x}} = \\
= \lim_{x \to \infty} \frac{-x}{x + x \sqrt{1 + \frac{1}{x}}} = \lim_{x \to \infty} \frac{-x}{x(1 + \sqrt{1 + \frac{1}{x}})} = -\frac{1}{2}
\]
5. (10 points)

A function \(y = y(x) \) is implicitly defined by the equation:

\[
2e^y \cos x - 2 = \sin(xy).
\]

(a) Find \(\frac{dy}{dx} \).

(b) Find the slope of the tangent line to the graph of \(y = y(x) \) at the point \((2\pi, 0)\).

Solution:

(a) Differentiating both sides of the equation with respect to the variable \(x \) taking into account that \(y = y(x) \) we get:

\[
2 \left(e^y \frac{dy}{dx} \cos x + e^y (-\sin x) \right) = \cos(xy) (y + x \frac{dy}{dx}),
\]

or

\[
\frac{dy}{dx} \left(2e^y \cos x - x \cos(xy) \right) = y \cos(xy) + 2e^y \sin x.
\]

Thus,

\[
\frac{dy}{dx} = \frac{y \cos(xy) + 2e^y \sin x}{2e^y \cos x - x \cos(xy)}, \quad 2e^y \cos x - x \cos(xy) \neq 0.
\]

(b) The slope of the tangent line is:

\[
\frac{dy}{dx} / (2\pi, 0) = \frac{0}{2 - 2\pi} = 0.
\]