Outline

1. How Derivatives Affect the Shape of a Graph
2. Curve Sketching
Find where \(f(x) = x^3 - 3x \) is increasing and where it is decreasing.

Solution. Its derivative is \(f'(x) = 3x^2 - 3 = 3(x - 1)(x + 1) \). Since \(f'(x) > 0 \) on \((-\infty, -1)\) and \((1, \infty)\), \(f(x) \) is increasing on \((-\infty, -1]\) and \([1, \infty)\). Since \(f'(x) < 0 \) on \((-1, 1)\), \(f(x) \) is decreasing on \([-1, 1]\).

Find where \(f(x) = \sin x \) is increasing and where it is decreasing.

Solution. Its derivative is \(f'(x) = \cos x \). Since \(f'(x) > 0 \) on \((2n\pi - \pi/2, 2n\pi + \pi/2)\), \(f(x) \) is increasing on \([2n\pi - \pi/2, 2n\pi + \pi/2]\) for \(n \) integer. Since \(f'(x) < 0 \) on \((2n\pi + \pi/2, 2n\pi + 3\pi/2)\), \(f(x) \) is decreasing on \([2n\pi + \pi/2, 2n\pi + 3\pi/2]\) for \(n \) integer.
Find where \(f(x) = x^3 - 3x \) is increasing and where it is decreasing.

Solution. Its derivative is \(f'(x) = 3x^2 - 3 = 3(x - 1)(x + 1) \). Since \(f'(x) > 0 \) on \((-\infty, -1)\) and \((1, \infty)\), \(f(x) \) is increasing on \((-\infty, -1]\) and \([1, \infty)\). Since \(f'(x) < 0 \) on \((-1, 1)\), \(f(x) \) is decreasing on \([-1, 1]\).

Find where \(f(x) = \sin x \) is increasing and where it is decreasing.

Solution. Its derivative is \(f'(x) = \cos x \). Since \(f'(x) > 0 \) on \((2n\pi - \pi/2, 2n\pi + \pi/2)\), \(f(x) \) is increasing on \([2n\pi - \pi/2, 2n\pi + \pi/2]\) for \(n \) integer. Since \(f'(x) < 0 \) on \((2n\pi + \pi/2, 2n\pi + 3\pi/2)\), \(f(x) \) is decreasing on \([2n\pi + \pi/2, 2n\pi + 3\pi/2]\) for \(n \) integer.
Intervals of Increase and Decrease

1. Find where $f(x) = x^3 - 3x$ is increasing and where it is decreasing.
 Solution. Its derivative is $f'(x) = 3x^2 - 3 = 3(x - 1)(x + 1)$.
 Since $f'(x) > 0$ on $(-\infty, -1)$ and $(1, \infty)$, $f(x)$ is increasing on $(-\infty, -1]$ and $[1, \infty)$. Since $f'(x) < 0$ on $(-1, 1)$, $f(x)$ is decreasing on $[-1, 1]$.

2. Find where $f(x) = \sin x$ is increasing and where it is decreasing.
 Solution. Its derivative is $f'(x) = \cos x$. Since $f'(x) > 0$ on $(2n\pi - \pi/2, 2n\pi + \pi/2)$, $f(x)$ is increasing on $[2n\pi - \pi/2, 2n\pi + \pi/2]$ for n integer. Since $f'(x) < 0$ on $(2n\pi + \pi/2, 2n\pi + 3\pi/2)$, $f(x)$ is decreasing on $[2n\pi + \pi/2, 2n\pi + 3\pi/2]$ for n integer.
How Derivatives Affect the Shape of a Graph
Curve Sketching

f’(x) and Local Extremes

First Derivative Test

If \(f'(x_0) = 0 \) and \(f'(x) \) changes from positive to negative at \(x_0 \) (\(f'(x) > 0 \) on \((x_0 - r, x_0)\) and \(f'(x) < 0 \) on \((x_0, x_0 + r)\)), then \(f(x) \) has a local maximum at \(x_0 \). If \(f'(x_0) = 0 \) and \(f'(x) \) changes from negative to positive at \(x_0 \) (\(f'(x) < 0 \) on \((x_0 - r, x_0)\) and \(f'(x) > 0 \) on \((x_0, x_0 + r)\)), then \(f(x) \) has a local minimum at \(x_0 \). If \(f'(x) \) does not change sign at \(x_0 \) (\(f'(x) > 0 \) on \((x_0 - r, x_0)\) \(\cup \) \((x_0, x_0 + r)\) or \(f'(x) < 0 \) on \((x_0 - r, x_0)\) \(\cup \) \((x_0, x_0 + r)\)).

- Find the local maxima and minima of \(f(x) = x^3 - 3x \).
- Find the local maxima and minima of \(f(x) = \sin x \).
First Derivative Test

If \(f'(x_0) = 0 \) and \(f'(x) \) changes from positive to negative at \(x_0 \) \((f'(x) > 0 \text{ on } (x_0 - r, x_0) \text{ and } f'(x) < 0 \text{ on } (x_0, x_0 + r))\), then \(f(x) \) has a local maximum at \(x_0 \). If \(f'(x_0) = 0 \) and \(f'(x) \) changes from negative to positive at \(x_0 \) \((f'(x) < 0 \text{ on } (x_0 - r, x_0) \text{ and } f'(x) > 0 \text{ on } (x_0, x_0 + r))\), then \(f(x) \) has a local minimum at \(x_0 \). If \(f'(x) \) does not change sign at \(x_0 \) \((f'(x) > 0 \text{ on } (x_0 - r, x_0) \cup (x_0, x_0 + r) \text{ or } f'(x) < 0 \text{ on } (x_0 - r, x_0) \cup (x_0, x_0 + r))\).

- Find the local maxima and minima of \(f(x) = x^3 - 3x \).
- Find the local maxima and minima of \(f(x) = \sin x \).
First Derivative Test

If \(f'(x_0) = 0 \) and \(f'(x) \) changes from positive to negative at \(x_0 \) \((f'(x) > 0 \text{ on } (x_0 - r, x_0) \text{ and } f'(x) < 0 \text{ on } (x_0, x_0 + r))\), then \(f(x) \) has a local maximum at \(x_0 \). If \(f'(x_0) = 0 \) and \(f'(x) \) changes from negative to positive at \(x_0 \) \((f'(x) < 0 \text{ on } (x_0 - r, x_0) \text{ and } f'(x) > 0 \text{ on } (x_0, x_0 + r))\), then \(f(x) \) has a local minimum at \(x_0 \). If \(f'(x) \) does not change sign at \(x_0 \) \((f'(x) > 0 \text{ on } (x_0 - r, x_0) \cup (x_0, x_0 + r) \text{ or } f'(x) < 0 \text{ on } (x_0 - r, x_0) \cup (x_0, x_0 + r))\).

- Find the local maxima and minima of \(f(x) = x^3 - 3x \).
- Find the local maxima and minima of \(f(x) = \sin x \).
$f''(x)$ and Concavity

We say $f(x)$ concave upward (CU) on an interval I if the curve $y = f(x)$ is always above its tangent lines:

$$f(x) \geq f(x_0) + f'(x_0)(x - x_0)$$

for all x_0, x in I. We say $f(x)$ concave downward (CD) on an interval I if the curve $y = f(x)$ is always below its tangent lines:

$$f(x) \leq f(x_0) + f'(x_0)(x - x_0)$$

for all x_0, x in I.

Criterion for CU and CD

On (a, b), $f''(x) > 0 \Rightarrow f(x)$ is CU; $f''(x) < 0 \Rightarrow f(x)$ is CD. If $f(x)$ changes from CU to CD or from CD to CU at x_0, $P = (x_0, f(x_0))$ is an inflection point of $y = f(x)$.
How Derivatives Affect the Shape of a Graph
Curve Sketching

$f''(x)$ and Concavity

We say $f(x)$ concave upward (CU) on an interval I if the curve $y = f(x)$ is always above its tangent lines:

$$f(x) \geq f(x_0) + f'(x_0)(x - x_0)$$

for all x_0, x in I. We say $f(x)$ concave downward (CD) on an interval I if the curve $y = f(x)$ is always below its tangent lines:

$$f(x) \leq f(x_0) + f'(x_0)(x - x_0)$$

for all x_0, x in I.

Criterion for CU and CD

On (a, b), $f''(x) > 0 \Rightarrow f(x)$ is CU; $f''(x) < 0 \Rightarrow f(x)$ is CD. If $f(x)$ changes from CU to CD or from CD to CU at x_0, $P = (x_0, f(x_0))$ is an inflection point of $y = f(x)$.
Examples

- Find the intervals of increase/decrease and CU/CD, local extremes and inflection points of \(f(x) = x^3 - 6x^2 + 12x \).

 Solution. Since \(f'(x) = 3x^2 - 12x + 12 = 3(x - 2)^2 > 0 \) for all \(x \neq 2 \), \(f(x) \) is increasing on \((-\infty, 2] \) and \([2, \infty) \). So it is increasing on \((-\infty, \infty) \) and it has no local extremes. Since \(f''(x) = 6x - 12 \), \(f(x) \) is CU on \((2, \infty) \) and CD on \((-\infty, 2) \) and \(P = (2, 8) \) is the inflection point of \(y = f(x) \).

- Find the intervals of increase/decrease and CU/CD, local extremes and inflection points of \(f(x) = \sin x \).

 Solution. Since \(f'(x) = \cos x \), \(f(x) \) in increasing on \((2n\pi - \pi/2, 2n\pi + \pi/2) \) and decreasing on \((2n\pi + \pi/2, 2n\pi + 3\pi/2) \). It has local maxima at \(2n\pi + \pi/2 \) and local minima at \(2n\pi - \pi/2 \). Since \(f''(x) = -\sin x \), \(f(x) \) is CU on \((2n\pi - \pi, 2n\pi) \) and CD on \((2n\pi, 2n\pi + \pi) \) and \((m\pi, 0) \) are the inflection points.
Examples

- Find the intervals of increase/decrease and CU/CD, local extremes and inflection points of \(f(x) = x^3 - 6x^2 + 12x \).

 Solution. Since \(f'(x) = 3x^2 - 12x + 12 = 3(x - 2)^2 > 0 \) for all \(x \neq 2 \), \(f(x) \) is increasing on \((-\infty, 2]\) and \([2, \infty)\). So it is increasing on \((-\infty, \infty)\) and it has no local extremes. Since \(f''(x) = 6x - 12 \), \(f(x) \) is CU on \((2, \infty)\) and CD on \((-\infty, 2)\) and \(P = (2, 8) \) is the inflection point of \(y = f(x) \).

- Find the intervals of increase/decrease and CU/CD, local extremes and inflection points of \(f(x) = \sin x \).

 Solution. Since \(f'(x) = \cos x \), \(f(x) \) is increasing on \((2n\pi - \pi/2, 2n\pi + \pi/2)\) and decreasing on \((2n\pi + \pi/2, 2n\pi + 3\pi/2)\). It has local maxima at \(2n\pi + \pi/2 \) and local minima at \(2n\pi - \pi/2 \). Since \(f''(x) = -\sin x \), \(f(x) \) is CU on \((2n\pi - \pi, 2n\pi)\) and CD on \((2n\pi, 2n\pi + \pi)\) and \((m\pi, 0)\) are the inflection points.
Examples

- Find the intervals of increase/decrease and CU/CD, local extremes and inflection points of $f(x) = x^3 - 6x^2 + 12x$.

 Solution. Since $f'(x) = 3x^2 - 12x + 12 = 3(x - 2)^2 > 0$ for all $x \neq 2$, $f(x)$ is increasing on $(-\infty, 2]$ and $[2, \infty)$. So it is increasing on $(-\infty, \infty)$ and it has no local extremes. Since $f''(x) = 6x - 12$, $f(x)$ is CU on $(2, \infty)$ and CD on $(-\infty, 2)$ and $P = (2, 8)$ is the inflection point of $y = f(x)$.

- Find the intervals of increase/decrease and CU/CD, local extremes and inflection points of $f(x) = \sin x$.

 Solution. Since $f'(x) = \cos x$, $f(x)$ in increasing on $(2n\pi - \pi/2, 2n\pi + \pi/2)$ and decreasing on $(2n\pi + \pi/2, 2n\pi + 3\pi/2)$. It has local maxima at $2n\pi + \pi/2$ and local minima at $2n\pi - \pi/2$. Since $f''(x) = -\sin x$, $f(x)$ is CU on $(2n\pi - \pi, 2n\pi)$ and CD on $(2n\pi, 2n\pi + \pi)$ and $(m\pi, 0)$ are the inflection points.
Examples

- Find the intervals of increase/decrease and CU/CD, local extremes and inflection points of \(f(x) = x^3 - 6x^2 + 12x \).
 Solution. Since \(f'(x) = 3x^2 - 12x + 12 = 3(x - 2)^2 > 0 \) for all \(x \neq 2 \), \(f(x) \) is increasing on \((-\infty, 2] \) and \([2, \infty) \). So it is increasing on \((-\infty, \infty) \) and it has no local extremes.
 Since \(f''(x) = 6x - 12 \), \(f(x) \) is CU on \((2, \infty) \) and CD on \((-\infty, 2) \) and \(P = (2, 8) \) is the inflection point of \(y = f(x) \).

- Find the intervals of increase/decrease and CU/CD, local extremes and inflection points of \(f(x) = \sin x \).
 Solution. Since \(f'(x) = \cos x \), \(f(x) \) in increasing on \((2n\pi - \pi/2, 2n\pi + \pi/2) \) and decreasing on \((2n\pi + \pi/2, 2n\pi + 3\pi/2) \). It has local maxima at \(2n\pi + \pi/2 \) and local minima at \(2n\pi - \pi/2 \). Since \(f''(x) = -\sin x \), \(f(x) \) is CU on \((2n\pi - \pi, 2n\pi) \) and CD on \((2n\pi, 2n\pi + \pi) \) and \((m\pi, 0) \) are the inflection points.
2nd Derivative Test

Suppose that $f'(x_0) = 0$. Then

1. If $f''(x_0) < 0$, $f(x)$ has a local max at x_0.
2. If $f''(x_0) > 0$, $f(x)$ has a local min at x_0.
3. If $f''(x_0) = 0$, we cannot determine whether $f(x)$ has a local max/min at x_0 by this test (we need higher derivatives $f^{(n)}(x_0)$ and Taylor series).

Find the local max/min of $f(x) = x^3 - 3x$.
Find the local max/min of $f(x) = \sin x$.
Find the local max/min of $f(x) = x^3$.
Find the local max/min of $f(x) = x^4$.
How Derivatives Affect the Shape of a Graph
Curve Sketching

2nd Derivative Test

Suppose that $f'(x_0) = 0$. Then

1. If $f''(x_0) < 0$, $f(x)$ has a local max at x_0.
2. If $f''(x_0) > 0$, $f(x)$ has a local min at x_0.
3. If $f''(x_0) = 0$, we cannot determine whether $f(x)$ has a local max/min at x_0 by this test (we need higher derivatives $f^{(n)}(x_0)$ and Taylor series).

Find the local max/min of $f(x) = x^3 - 3x$.

Find the local max/min of $f(x) = \sin x$.

Find the local max/min of $f(x) = x^3$.

Find the local max/min of $f(x) = x^4$.
How Derivatives Affect the Shape of a Graph
Curve Sketching

f''(x) and Local Extremes

2nd Derivative Test

Suppose that \(f'(x_0) = 0 \). Then

1. If \(f''(x_0) < 0 \), \(f(x) \) has a local max at \(x_0 \).
2. If \(f''(x_0) > 0 \), \(f(x) \) has a local min at \(x_0 \).
3. If \(f''(x_0) = 0 \), we cannot determine whether \(f(x) \) has a local max/min at \(x_0 \) by this test (we need higher derivatives \(f^{(n)}(x_0) \) and Taylor series).

- Find the local max/min of \(f(x) = x^3 - 3x \).
- Find the local max/min of \(f(x) = \sin x \).
- Find the local max/min of \(f(x) = x^3 \).
- Find the local max/min of \(f(x) = x^4 \).
How Derivatives Affect the Shape of a Graph
Curve Sketching

\(f''(x) \) and Local Extremes

2nd Derivative Test

Suppose that \(f'(x_0) = 0 \). Then

1. If \(f''(x_0) < 0 \), \(f(x) \) has a local max at \(x_0 \).
2. If \(f''(x_0) > 0 \), \(f(x) \) has a local min at \(x_0 \).
3. If \(f''(x_0) = 0 \), we cannot determine whether \(f(x) \) has a local max/min at \(x_0 \) by this test (we need higher derivatives \(f^{(n)}(x_0) \) and Taylor series).

- Find the local max/min of \(f(x) = x^3 - 3x \).
- Find the local max/min of \(f(x) = \sin x \).
- Find the local max/min of \(f(x) = x^3 \).
- Find the local max/min of \(f(x) = x^4 \).
2nd Derivative Test

Suppose that \(f'(x_0) = 0 \). Then

1. If \(f''(x_0) < 0 \), \(f(x) \) has a local max at \(x_0 \).
2. If \(f''(x_0) > 0 \), \(f(x) \) has a local min at \(x_0 \).
3. If \(f''(x_0) = 0 \), we cannot determine whether \(f(x) \) has a local max/min at \(x_0 \) by this test (we need higher derivatives \(f^{(n)}(x_0) \) and Taylor series).

Find the local max/min of \(f(x) = x^3 - 3x \).
Find the local max/min of \(f(x) = \sin x \).
Find the local max/min of \(f(x) = x^3 \).
Find the local max/min of \(f(x) = x^4 \).
Summary

<table>
<thead>
<tr>
<th>Test</th>
<th>Purpose</th>
<th>How it works</th>
</tr>
</thead>
</table>
| Increasing/Decreasing | Test Monotonicity | $f'(x) > 0 \Rightarrow f(x) \uparrow$
 | | $f'(x) < 0 \Rightarrow f(x) \downarrow$ |
| **CU/CD** | Test Concavity | $f''(x) > 0 \Rightarrow f(x) \text{ CU}$
 | | $f''(x) < 0 \Rightarrow f(x) \text{ CD}$ | |
| 1st Derivative | Determine local max/min | $f'(x)$ goes $-\rightarrow + \Rightarrow$ local min |
 | | $f'(x)$ goes $+\rightarrow - \Rightarrow$ local max |
| 2nd Derivative | Determine local max/min | $f''(x_0) > 0 \Rightarrow$ local min |
 | | $f''(x_0) < 0 \Rightarrow$ local max |
To sketch the curve $y = f(x)$, we follow these steps:

A. Determine the domain.
B. Determine xy-intercepts.
C. Symmetry: determine whether $f(x)$ is odd, even and/or periodic.
D. Asymptotes: find horizontal and vertical asymptotes.
E. Find intervals of increase and decrease.
F. Find local extremes.
G. Concavity and inflection points.
H. Sketch the curve.
To sketch the curve $y = f(x)$, we follow these steps:

A. Determine the domain.
B. Determine xy-intercepts.
C. Symmetry: determine whether $f(x)$ is odd, even and/or periodic.
D. Asymptotes: find horizontal and vertical asymptotes.
E. Find intervals of increase and decrease.
F. Find local extremes.
G. Concavity and inflection points.
H. Sketch the curve.
Curve Sketching

To sketch the curve $y = f(x)$, we follow these steps:

A. Determine the domain.
B. Determine xy-intercepts.
C. Symmetry: determine whether $f(x)$ is odd, even and/or periodic.
D. Asymptotes: find horizontal and vertical asymptotes.
E. Find intervals of increase and decrease.
F. Find local extremes.
G. Concavity and inflection points.
H. Sketch the curve.
To sketch the curve $y = f(x)$, we follow these steps:

A. Determine the domain.
B. Determine xy-intercepts.
C. Symmetry: determine whether $f(x)$ is odd, even and/or periodic.
D. Asymptotes: find horizontal and vertical asymptotes.
E. Find intervals of increase and decrease.
F. Find local extremes.
G. Concavity and inflection points.
H. Sketch the curve.
Curve Sketching

To sketch the curve $y = f(x)$, we follow these steps:

A. Determine the domain.
B. Determine xy-intercepts.
C. Symmetry: determine whether $f(x)$ is odd, even and/or periodic.
D. Asymptotes: find horizontal and vertical asymptotes.
E. Find intervals of increase and decrease.
F. Find local extremes.
G. Concavity and inflection points.
H. Sketch the curve.
To sketch the curve $y = f(x)$, we follow these steps:

A. Determine the domain.
B. Determine xy-intercepts.
C. Symmetry: determine whether $f(x)$ is odd, even and/or periodic.
D. Asymptotes: find horizontal and vertical asymptotes.
E. Find intervals of increase and decrease.
F. Find local extremes.
G. Concavity and inflection points.
H. Sketch the curve.
Curve Sketching

To sketch the curve $y = f(x)$, we follow these steps:

A. Determine the domain.
B. Determine xy-intercepts.
C. Symmetry: determine whether $f(x)$ is odd, even and/or periodic.
D. Asymptotes: find horizontal and vertical asymptotes.
E. Find intervals of increase and decrease.
F. Find local extremes.
G. Concavity and inflection points.
H. Sketch the curve.
Curve Sketching

To sketch the curve $y = f(x)$, we follow these steps:

A. Determine the domain.
B. Determine xy-intercepts.
C. Symmetry: determine whether $f(x)$ is odd, even and/or periodic.
D. Asymptotes: find horizontal and vertical asymptotes.
E. Find intervals of increase and decrease.
F. Find local extremes.
G. Concavity and inflection points.
H. Sketch the curve.
Examples

- Sketch the graph of $f(x) = x^3 - 3x$.
- Sketch the graph of $f(x) = x + \frac{1}{x}$.
- Sketch the graph of $f(x) = \sqrt{x^2 + x - x}$.

Solution.

$$f'(x) = \frac{2x + 1}{2\sqrt{x^2 + x}} - 1 \text{ and } f''(x) = -\frac{1}{4}(x^2 + x)^{-3/2}$$
Examples

- Sketch the graph of $f(x) = x^3 - 3x$.
- Sketch the graph of $f(x) = x + \frac{1}{x}$.
- Sketch the graph of $f(x) = \sqrt{x^2 + x - x}$.

Solution.

$$f'(x) = \frac{2x + 1}{2\sqrt{x^2 + x}} - 1$$ and $$f''(x) = -\frac{1}{4}(x^2 + x)^{-3/2}$$
Examples

- Sketch the graph of \(f(x) = x^3 - 3x \).
- Sketch the graph of \(f(x) = x + \frac{1}{x} \).
- Sketch the graph of \(f(x) = \sqrt{x^2 + x} - x \).

Solution.

\[
f'(x) = \frac{2x + 1}{2\sqrt{x^2 + x}} - 1 \text{ and } f'''(x) = -\frac{1}{4}(x^2 + x)^{-3/2}
\]
Examples

- Sketch the graph of \(f(x) = x^3 - 3x \).
- Sketch the graph of \(f(x) = x + \frac{1}{x} \).
- Sketch the graph of \(f(x) = \sqrt{x^2 + x} - x \).

Solution.

\[
f'(x) = \frac{2x + 1}{2\sqrt{x^2 + x}} - 1 \quad \text{and} \quad f''(x) = -\frac{1}{4}(x^2 + x)^{-3/2}
\]