Limits

Notation:

\[
\frac{f(x_1) - f(x_0)}{x_1 - x_0} \to m \text{ as } x_1 \to x_0 \iff \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = m
\]

More generally,

\[
f(x) \to L \text{ as } x \to a \iff \lim_{x \to a} f(x) = L.
\]

“Definition” of Limits

Let \(f(x) \) be a function defined near \(a \). Then

\[
\lim_{x \to a} f(x) = L
\]

if we can make the values of \(f(x) \) arbitrarily close to \(L \) by taking \(x \) sufficiently close to \(a \) but not equal to \(a \).
Limits

Notation:

\[
\frac{f(x_1) - f(x_0)}{x_1 - x_0} \rightarrow m \text{ as } x_1 \rightarrow x_0 \iff \lim_{x_1 \rightarrow x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = m
\]

More generally,

\[
f(x) \rightarrow L \text{ as } x \rightarrow a \iff \lim_{x \rightarrow a} f(x) = L.
\]

“Definition” of Limits

Let \(f(x) \) be a function defined near \(a \). Then

\[
\lim_{x \rightarrow a} f(x) = L
\]

if we can make the values of \(f(x) \) arbitrarily close to \(L \) by taking \(x \) sufficiently close to \(a \) but not equal to \(a \).
Real Definition of Limits

Let \(f(x) \) be a function defined near \(a \). Then

\[
\lim_{{x \to a}} f(x) = L
\]

if for every \(e > 0 \), we can find \(d > 0 \) such that

\[
|f(x) - L| < e
\]

for \(|x - a| < d \) and \(x \neq a \).
Examples of Limits

Explain why

$$\lim_{{x \to 1}} (x + 1) = 2$$

Numerical Evidence: As x approaches 1, $f(x) = x + 1$ approaches 2:

<table>
<thead>
<tr>
<th>x</th>
<th>1.1</th>
<th>1.01</th>
<th>1.001</th>
<th>.9</th>
<th>.99</th>
<th>.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x + 1$</td>
<td>2.1</td>
<td>2.01</td>
<td>2.001</td>
<td>1.9</td>
<td>1.99</td>
<td>1.999</td>
</tr>
</tbody>
</table>

Real Reason: The value of $x + 1$ can be made arbitrarily close to 2 by taking x sufficiently close to 1 \Leftrightarrow

$$|f(x) - 2| = |(x + 1) - 2| < e$$
\text{as long as } |x - 1| < e

- $|x - 1| < .1 \Rightarrow |f(x) - 2| < .1$
- $|x - 1| < .01 \Rightarrow |f(x) - 2| < .01$
- $|x - 1| < .001 \Rightarrow |f(x) - 2| < .001$
Examples of Limits

Explain why

\[
\lim_{{x \to 1}} (x + 1) = 2
\]

Numerical Evidence: As \(x \) approaches 1, \(f(x) = x + 1 \) approaches 2:

<table>
<thead>
<tr>
<th>(x)</th>
<th>1.1</th>
<th>1.01</th>
<th>1.001</th>
<th>.9</th>
<th>.99</th>
<th>.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x + 1)</td>
<td>2.1</td>
<td>2.01</td>
<td>2.001</td>
<td>1.9</td>
<td>1.99</td>
<td>1.999</td>
</tr>
</tbody>
</table>

Real Reason: The value of \(x + 1 \) can be made arbitrarily close to 2 by taking \(x \) sufficiently close to 1 \(\iff \)

\[
|f(x) - 2| = |(x + 1) - 2| < \varepsilon \text{ as long as } |x - 1| < \varepsilon
\]

\[
\begin{align*}
| x - 1 | < .1 & \Rightarrow |f(x) - 2| < .1 \\
| x - 1 | < .01 & \Rightarrow |f(x) - 2| < .01 \\
| x - 1 | < .001 & \Rightarrow |f(x) - 2| < .001
\end{align*}
\]
Examples of Limits

Explain why

\[\lim_{x \to 1} (x + 1) = 2 \]

Numerical Evidence: As \(x \) approaches 1, \(f(x) = x + 1 \) approaches 2:

<table>
<thead>
<tr>
<th>(x)</th>
<th>1.1</th>
<th>1.01</th>
<th>1.001</th>
<th>.9</th>
<th>.99</th>
<th>.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x + 1)</td>
<td>2.1</td>
<td>2.01</td>
<td>2.001</td>
<td>1.9</td>
<td>1.99</td>
<td>1.999</td>
</tr>
</tbody>
</table>

Real Reason: The value of \(x + 1 \) can be made arbitrarily close to 2 by taking \(x \) sufficiently close to 1 \(\iff \)

\[|f(x) - 2| = |(x + 1) - 2| < e \text{ as long as } |x - 1| < e \]

- \(|x - 1| < .1 \iff |f(x) - 2| < .1 \)
- \(|x - 1| < .01 \iff |f(x) - 2| < .01 \)
- \(|x - 1| < .001 \iff |f(x) - 2| < .001 \)
Examples of Limits

Explain why

$$\lim_{{x \to 1}} (x + 1) = 2$$

Numerical Evidence: As x approaches 1, $f(x) = x + 1$ approaches 2:

<table>
<thead>
<tr>
<th>x</th>
<th>1.1</th>
<th>1.01</th>
<th>1.001</th>
<th>.9</th>
<th>.99</th>
<th>.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x + 1$</td>
<td>2.1</td>
<td>2.01</td>
<td>2.001</td>
<td>1.9</td>
<td>1.99</td>
<td>1.999</td>
</tr>
</tbody>
</table>

Real Reason: The value of $x + 1$ can be made arbitrarily close to 2 by taking x sufficiently close to 1 \iff

$$|f(x) - 2| = |(x + 1) - 2| < e \text{ as long as } |x - 1| < e$$

- $|x - 1| < .1 \Rightarrow |f(x) - 2| < .1$
- $|x - 1| < .01 \Rightarrow |f(x) - 2| < .01$
- $|x - 1| < .001 \Rightarrow |f(x) - 2| < .001$
Examples of Limits

Explain why

\[\lim_{{x \to 1}} (2x + 1) = 3 \]

Numerical Evidence: As \(x \) approaches 1, \(f(x) = x + 1 \) approaches 2:

<table>
<thead>
<tr>
<th>(x)</th>
<th>1.1</th>
<th>1.01</th>
<th>1.001</th>
<th>.9</th>
<th>.99</th>
<th>.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2x + 1)</td>
<td>3.2</td>
<td>3.02</td>
<td>3.002</td>
<td>2.8</td>
<td>2.98</td>
<td>2.998</td>
</tr>
</tbody>
</table>

Real Reason: The value of \(2x + 1 \) can be made arbitrarily close to 3 by taking \(x \) sufficiently close to 1 \(\Leftrightarrow \)

\[
|f(x) - 3| = |(2x + 1) - 3| < \varepsilon \text{ as long as } |x - 1| < \frac{\varepsilon}{2}
\]

\[|x - 1| < .05 \Rightarrow |f(x) - 3| < .1 \]
\[|x - 1| < .005 \Rightarrow |f(x) - 3| < .01 \]
\[|x - 1| < .0005 \Rightarrow |f(x) - 3| < .001 \]
Examples of Limits

Explain why

\[\lim_{x \to 1} (2x + 1) = 3 \]

Numerical Evidence: As \(x \) approaches 1, \(f(x) = x + 1 \) approaches 2:

<table>
<thead>
<tr>
<th>(x)</th>
<th>1.1</th>
<th>1.01</th>
<th>1.001</th>
<th>.9</th>
<th>.99</th>
<th>.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2x + 1)</td>
<td>3.2</td>
<td>3.02</td>
<td>3.002</td>
<td>2.8</td>
<td>2.98</td>
<td>2.998</td>
</tr>
</tbody>
</table>

Real Reason: The value of \(2x + 1 \) can be made arbitrarily close to 3 by taking \(x \) sufficiently close to 1 ⇔

\[|f(x) - 3| = |(2x + 1) - 3| < \varepsilon \text{ as long as } |x - 1| < \frac{\varepsilon}{2} \]

- \(|x - 1| < .05 \Rightarrow |f(x) - 3| < .1 \)
- \(|x - 1| < .005 \Rightarrow |f(x) - 3| < .01 \)
- \(|x - 1| < .0005 \Rightarrow |f(x) - 3| < .001 \)
Examples of Limits

Explain why

\[\lim_{x \to 1} (2x + 1) = 3 \]

Numerical Evidence: As \(x \) approaches 1, \(f(x) = x + 1 \) approaches 2:

<table>
<thead>
<tr>
<th>(x)</th>
<th>1.1</th>
<th>1.01</th>
<th>1.001</th>
<th>.9</th>
<th>.99</th>
<th>.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2x + 1)</td>
<td>3.2</td>
<td>3.02</td>
<td>3.002</td>
<td>2.8</td>
<td>2.98</td>
<td>2.998</td>
</tr>
</tbody>
</table>

Real Reason: The value of \(2x + 1 \) can be made arbitrarily close to 3 by taking \(x \) sufficiently close to 1 \(\iff \)

\[|f(x) - 3| = |(2x + 1) - 3| < e \text{ as long as } |x - 1| < \frac{e}{2} \]

\[|x - 1| < .05 \implies |f(x) - 3| < .1 \]
\[|x - 1| < .005 \implies |f(x) - 3| < .01 \]
\[|x - 1| < .0005 \implies |f(x) - 3| < .001 \]
Examples of Limits

Explain why

\[\lim_{x \to 1} (2x + 1) = 3 \]

Numerical Evidence: As \(x \) approaches 1, \(f(x) = x + 1 \) approaches 2:

<table>
<thead>
<tr>
<th>(x)</th>
<th>1.1</th>
<th>1.01</th>
<th>1.001</th>
<th>.9</th>
<th>.99</th>
<th>.999</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2x + 1)</td>
<td>3.2</td>
<td>3.02</td>
<td>3.002</td>
<td>2.8</td>
<td>2.98</td>
<td>2.998</td>
</tr>
</tbody>
</table>

Real Reason: The value of \(2x + 1 \) can be made arbitrarily close to 3 by taking \(x \) sufficiently close to 1 \(\iff \)

\[|f(x) - 3| = |(2x + 1) - 3| < e \text{ as long as } |x - 1| < \frac{e}{2} \]

\[|x - 1| < .05 \implies |f(x) - 3| < .1 \]

\[|x - 1| < .005 \implies |f(x) - 3| < .01 \]

\[|x - 1| < .0005 \implies |f(x) - 3| < .001 \]
Examples and Comments

\[
\lim_{x \to 0} \frac{\sin x}{x} = 1
\]

\[
\lim_{x \to 0} \frac{2^x - 1}{x} = \ln 2
\]

\[
\lim_{x \to 0} (1 + x)^{1/x} = e
\]

\[
\lim f(x) \text{ is defined even if } f(a) \text{ is not defined.}
\]

\[
\lim_{x \to a} f(x) = \lim_{x \to 0} f(x + a)
\]
Examples and Comments

- \(\lim_{x \to 0} \frac{\sin x}{x} = 1 \)
- \(\lim_{x \to 0} \frac{2^x - 1}{x} = \ln 2 \)
- \(\lim_{x \to 0} (1 + x)^{1/x} = e \)
- \(\lim_{x \to a} f(x) \) is defined even if \(f(a) \) is not defined.
- \(\lim_{x \to a} f(x) = \lim_{x \to 0} f(x + a) \)
Examples and Comments

- \(\lim_{x \to 0} \frac{\sin x}{x} = 1 \)
- \(\lim_{x \to 0} \frac{2^x - 1}{x} = \ln 2 \)
- \(\lim_{x \to 0} (1 + x)^{1/x} = e \)
- \(\lim_{x \to a} f(x) \) is defined even if \(f(a) \) is not defined.
- \(\lim_{x \to a} f(x) = \lim_{x \to 0} f(x + a) \)
Examples and Comments

- \(\lim_{x \to 0} \frac{\sin x}{x} = 1 \)
- \(\lim_{x \to 0} \frac{2^x - 1}{x} = \ln 2 \)
- \(\lim_{x \to 0} (1 + x)^{1/x} = e \)
- \(\lim_{x \to a} f(x) \) is defined even if \(f(a) \) is not defined.
- \(\lim_{x \to a} f(x) = \lim_{x \to 0} f(x + a) \)
Examples and Comments

\[
\lim_{x \to 0} \frac{\sin x}{x} = 1
\]

\[
\lim_{x \to 0} \frac{2^x - 1}{x} = \ln 2
\]

\[
\lim_{x \to 0} (1 + x)^{1/x} = e
\]

- \(\lim_{x \to a} f(x) \) is defined even if \(f(a) \) is not defined.
- \(\lim_{x \to a} f(x) = \lim_{x \to 0} f(x + a) \)
Examples and Comments

• \(\lim_{x \to 0} \frac{\sin x}{x} = 1 \)

• \(\lim_{x \to 0} \frac{2^x - 1}{x} = \ln 2 \)

• \(\lim_{x \to 0} (1 + x)^{1/x} = e \)

• \(\lim_{x \to a} f(x) \) is defined even if \(f(a) \) is not defined.

• \(\lim_{x \to a} f(x) = \lim_{x \to 0} f(x + a) \)
Examples and Comments

- \(\lim_{x \to 0} \frac{\sin x}{x} = 1 \)
- \(\lim_{x \to 0} \frac{2^x - 1}{x} = \ln 2 \)
- \(\lim_{x \to 0} (1 + x)^{1/x} = e \)
- \(\lim_{x \to a} f(x) \) is defined even if \(f(a) \) is not defined.
- \(\lim_{x \to a} f(x) = \lim_{x \to 0} f(x + a) \)
Examples and Comments

- \(\lim_{x \to 0} \frac{\sin x}{x} = 1 \)
- \(\lim_{x \to 0} \frac{2^x - 1}{x} = \ln 2 \)
- \(\lim_{x \to 0} (1 + x)^{1/x} = e \)
- \(\lim_{x \to a} f(x) \) is defined even if \(f(a) \) is not defined.
- \(\lim_{x \to a} f(x) = \lim_{x \to 0} f(x + a) \)
Examples of Limits DNE

- \(\lim_{x \to 0} \frac{1}{x^2} \) does not exist (DNE).

 As \(x \to 0 \), \(x^2 \to 0 \) and \(x^2 > 0 \). So \(\frac{1}{x^2} \) becomes arbitrarily large as \(x \to 0 \).

- \(\lim_{x \to 0} \frac{|x|}{x} \) DNE.

 \[
 \frac{|x|}{x} = \begin{cases}
 1 & \text{if } x > 0 \\
 -1 & \text{if } x < 0
 \end{cases}
 \]

- \(\lim_{x \to 0} \sin \left(\frac{1}{x} \right) \) DNE

 Let \(x_n = 1/(2n\pi + \pi/2) \). Then \(\sin(1/x_n) = 1 \).
 Let \(x_n = 1/(2n\pi - \pi/2) \). Then \(\sin(1/x_n) = -1 \).
Examples of Limits DNE

- \(\lim_{x \to 0} \frac{1}{x^2} \) does not exist (DNE).

 As \(x \to 0 \), \(x^2 \to 0 \) and \(x^2 > 0 \). So \(\frac{1}{x^2} \) becomes arbitrarily large as \(x \to 0 \).

- \(\lim_{x \to 0} \frac{|x|}{x} \) DNE.

 \[
 \frac{|x|}{x} = \begin{cases}
 1 & \text{if } x > 0 \\
 -1 & \text{if } x < 0
 \end{cases}
 \]

- \(\lim_{x \to 0} \sin \left(\frac{1}{x} \right) \) DNE

 Let \(x_n = \frac{1}{(2n\pi + \pi/2)} \). Then \(\sin(1/x_n) = 1 \).
 Let \(x_n = \frac{1}{(2n\pi - \pi/2)} \). Then \(\sin(1/x_n) = -1 \).
Examples of Limits DNE

- \(\lim_{x \to 0} \frac{1}{x^2} \) does not exist (DNE).

 As \(x \to 0 \), \(x^2 \to 0 \) and \(x^2 > 0 \). So \(\frac{1}{x^2} \) becomes arbitrarily large as \(x \to 0 \).

- \(\lim_{x \to 0} \frac{|x|}{x} \) DNE.

 \[
 \frac{|x|}{x} = \begin{cases}
 1 & \text{if } x > 0 \\
 -1 & \text{if } x < 0
 \end{cases}
 \]

- \(\lim_{x \to 0} \sin \left(\frac{1}{x} \right) \) DNE

 Let \(x_n = 1/(2n\pi + \pi/2) \). Then \(\sin(1/x_n) = 1 \).

 Let \(x_n = 1/(2n\pi - \pi/2) \). Then \(\sin(1/x_n) = -1 \).
Examples of Limits DNE

- \(\lim_{x \to 0} \frac{1}{x^2} \) does not exist (DNE).

 As \(x \to 0 \), \(x^2 \to 0 \) and \(x^2 > 0 \). So \(\frac{1}{x^2} \) becomes arbitrarily large as \(x \to 0 \).

- \(\lim_{x \to 0} \frac{|x|}{x} \) DNE.

\[
\frac{|x|}{x} = \begin{cases}
1 & \text{if } x > 0 \\
-1 & \text{if } x < 0
\end{cases}
\]

- \(\lim_{x \to 0} \sin \left(\frac{1}{x} \right) \) DNE

Let \(x_n = 1/(2n\pi + \pi/2) \). Then \(\sin(1/x_n) = 1 \).

Let \(x_n = 1/(2n\pi - \pi/2) \). Then \(\sin(1/x_n) = -1 \).
Examples of Limits DNE

- \[\lim_{x \to 0} \frac{1}{x^2} \] does not exist (DNE).

 As \(x \to 0 \), \(x^2 \to 0 \) and \(x^2 > 0 \). So \(\frac{1}{x^2} \) becomes arbitrarily large as \(x \to 0 \).

- \[\lim_{x \to 0} \frac{|x|}{x} \] DNE.

 \[
 \frac{|x|}{x} = \begin{cases}
 1 & \text{if } x > 0 \\
 -1 & \text{if } x < 0
 \end{cases}
 \]

- \[\lim_{x \to 0} \sin \left(\frac{1}{x} \right) \] DNE

 Let \(x_n = \frac{1}{(2n\pi + \pi/2)} \). Then \(\sin(1/x_n) = 1 \).

 Let \(x_n = \frac{1}{(2n\pi - \pi/2)} \). Then \(\sin(1/x_n) = -1 \).
Examples of Limits DNE

- \(\lim_{x \to 0} \frac{1}{x^2} \) does not exist (DNE).

 As \(x \to 0 \), \(x^2 \to 0 \) and \(x^2 > 0 \). So \(\frac{1}{x^2} \) becomes arbitrarily large as \(x \to 0 \).

- \(\lim_{x \to 0} \frac{|x|}{x} \) DNE.

 \[
 \frac{|x|}{x} = \begin{cases}
 1 & \text{if } x > 0 \\
 -1 & \text{if } x < 0
 \end{cases}
 \]

- \(\lim_{x \to 0} \sin \left(\frac{1}{x} \right) \) DNE

 Let \(x_n = 1/(2n\pi + \pi/2) \). Then \(\sin(1/x_n) = 1 \).

 Let \(x_n = 1/(2n\pi - \pi/2) \). Then \(\sin(1/x_n) = -1 \).
“Definition” of Left-hand/Right-hand Limits

Let \(f(x) \) be a function defined in some interval \((a - r, a)\). Then

\[
\lim_{{x \to a^-}} f(x) = L
\]

if we can make the values of \(f(x) \) arbitrarily close to \(L \) by taking \(x \) sufficiently close to \(a \) but less than \(a \).

Let \(f(x) \) be a function defined in some interval \((a, a + r)\). Then

\[
\lim_{{x \to a^+}} f(x) = L
\]

if we can make the values of \(f(x) \) arbitrarily close to \(L \) by taking \(x \) sufficiently close to \(a \) but greater than \(a \).
“Definition” of Left-hand/Right-hand Limits

Let $f(x)$ be a function defined in some interval $(a - r, a)$. Then

$$\lim_{x \to a^-} f(x) = L$$

if we can make the values of $f(x)$ arbitrarily close to L by taking x sufficiently close to a but less than a.

Let $f(x)$ be a function defined in some interval $(a, a + r)$. Then

$$\lim_{x \to a^+} f(x) = L$$

if we can make the values of $f(x)$ arbitrarily close to L by taking x sufficiently close to a but greater than a.
Examples and Comments

\[\lim_{x \to 1^+} \frac{|x - 1|}{x - 1} \]

\[\lim_{x \to 1^-} \frac{|x - 1|}{x - 1} \]

\[\lim_{x \to 0^+} \lfloor x \rfloor \text{ where } \lfloor x \rfloor \text{ is the largest integer } \leq x. \]

\[\lim_{x \to 0^-} \lfloor x \rfloor \]

\[\lim_{x \to a} f(x) = L \text{ if and only if } \]

\[\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L \]
Examples and Comments

- \(\lim_{x \to 1^+} \frac{|x - 1|}{x - 1} \)
- \(\lim_{x \to 1^-} \frac{|x - 1|}{x - 1} \)
- \(\lim_{x \to 0^+} \lfloor x \rfloor \) where \(\lfloor x \rfloor \) is the largest integer \(\leq x \).
- \(\lim_{x \to 0^-} \lfloor x \rfloor \)
- \(\lim_{x \to a} f(x) = L \) if and only if \(\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L \)
Examples and Comments

- \(\lim_{x \to 1^+} \frac{|x - 1|}{x - 1} \)
- \(\lim_{x \to 1^-} \frac{|x - 1|}{x - 1} \)
- \(\lim_{x \to 0^+} \lfloor x \rfloor \) where \(\lfloor x \rfloor \) is the largest integer \(\leq x \).
- \(\lim_{x \to 0^-} \lfloor x \rfloor \)
- \(\lim_{x \to a} f(x) = L \) if and only if

\[
\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L
\]
Examples and Comments

- \(\lim_{x \to 1^+} \frac{|x - 1|}{x - 1} \)
- \(\lim_{x \to 1^-} \frac{|x - 1|}{x - 1} \)
- \(\lim_{x \to 0^+} \lfloor x \rfloor \) where \(\lfloor x \rfloor \) is the largest integer \(\leq x \).
- \(\lim_{x \to 0^-} \lfloor x \rfloor \)
- \(\lim_{x \to a} f(x) = L \) if and only if
 \[\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L \]
Examples and Comments

\[\lim_{x \to 1^+} \frac{|x - 1|}{x - 1} \]

\[\lim_{x \to 1^-} \frac{|x - 1|}{x - 1} \]

\[\lim_{x \to 0^+} \lfloor x \rfloor \text{ where } \lfloor x \rfloor \text{ is the largest integer } \leq x. \]

\[\lim_{x \to 0^-} \lfloor x \rfloor \]

\[\lim_{x \to a} f(x) = L \text{ if and only if } \]

\[\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L \]
“Definition” of Infinite Limits

Let \(f(x) \) be a function defined near \(a \).

\[
\lim_{{x \to a}} f(x) = \infty
\]

if we can make the values of \(f(x) \) arbitrarily large positively by taking \(x \) sufficiently close to \(a \) but not equal to \(a \).

Let \(f(x) \) be a function defined near \(a \).

\[
\lim_{{x \to a}} f(x) = -\infty
\]

if we can make the values of \(f(x) \) arbitrarily large negatively by taking \(x \) sufficiently close to \(a \) but not equal to \(a \).
Infinite Limits

“Definition” of Infinite Limits

Let \(f(x) \) be a function defined near \(a \).

\[
\lim_{x \to a} f(x) = \infty
\]

if we can make the values of \(f(x) \) arbitrarily large positively by taking \(x \) sufficiently close to \(a \) but not equal to \(a \).

Let \(f(x) \) be a function defined near \(a \).

\[
\lim_{x \to a} f(x) = -\infty
\]

if we can make the values of \(f(x) \) arbitrarily large negatively by taking \(x \) sufficiently close to \(a \) but not equal to \(a \).
“Definition” of Infinite Limits

Let $f(x)$ be a function defined on (b, ∞). Then

$$
\lim_{{x \to \infty}} f(x) = L
$$

if we can make the values of $f(x)$ arbitrarily close to L by taking x sufficiently large positively.

Let $f(x)$ be a function defined on $(-\infty, b)$. Then

$$
\lim_{{x \to -\infty}} f(x) = L
$$

if we can make the values of $f(x)$ arbitrarily close to L by taking x sufficiently large negatively.
“Definition” of Infinite Limits

Let \(f(x) \) be a function defined on \((b, \infty)\). Then

\[
\lim_{x \to \infty} f(x) = L
\]

if we can make the values of \(f(x) \) arbitrarily close to \(L \) by taking \(x \) sufficiently large positively.

Let \(f(x) \) be a function defined on \((-\infty, b)\). Then

\[
\lim_{x \to -\infty} f(x) = L
\]

if we can make the values of \(f(x) \) arbitrarily close to \(L \) by taking \(x \) sufficiently large negatively.
Examples and Comments

- Explain \(\lim_{x \to 1^+} f(x) = -\infty \).
- Explain \(\lim_{x \to -\infty} f(x) = \infty \).
- Find the infinite limit \(\lim_{x \to 0^+} \frac{1}{x} \).
- Find the infinite limit \(\lim_{x \to 0^-} \frac{1}{x} \).
- Find the infinite limit \(\lim_{x \to \infty} \frac{1}{x} \).
- Find the infinite limit \(\lim_{x \to -\infty} \frac{1}{x} \).
- Find the infinite limit \(\lim_{x \to 0^+} \ln x \).
Examples and Comments

- Explain \(\lim_{x \to 1^+} f(x) = -\infty \).
- Explain \(\lim_{x \to -\infty} f(x) = \infty \).

- Find the infinite limit \(\lim_{x \to 0^+} \frac{1}{x} \).
- Find the infinite limit \(\lim_{x \to 0^-} \frac{1}{x} \).
- Find the infinite limit \(\lim_{x \to \infty} \frac{1}{x} \).
- Find the infinite limit \(\lim_{x \to -\infty} \frac{1}{x} \).
- Find the infinite limit \(\lim_{x \to 0^+} \ln x \).
Examples and Comments

- Explain \(\lim_{{x \to 1^+}} f(x) = -\infty \).
- Explain \(\lim_{{x \to -\infty}} f(x) = \infty \).

- Find the infinite limit \(\lim_{{x \to 0^+}} \frac{1}{x} \).
- Find the infinite limit \(\lim_{{x \to 0^-}} \frac{1}{x} \).
- Find the infinite limit \(\lim_{{x \to \infty}} \frac{1}{x} \).
- Find the infinite limit \(\lim_{{x \to -\infty}} \frac{1}{x} \).
- Find the infinite limit \(\lim_{{x \to 0^+}} \ln x \)
Examples and Comments

- Explain \(\lim_{x \to 1^+} f(x) = -\infty \).
- Explain \(\lim_{x \to -\infty} f(x) = \infty \).

Find the infinite limit \(\lim_{x \to 0^+} \frac{1}{x} \).

Find the infinite limit \(\lim_{x \to 0^-} \frac{1}{x} \).

Find the infinite limit \(\lim_{x \to \infty} \frac{1}{x} \).

Find the infinite limit \(\lim_{x \to -\infty} \frac{1}{x} \).

Find the infinite limit \(\lim_{x \to 0^+} \ln x \).
Examples and Comments

- Explain \(\lim_{x \to 1^+} f(x) = -\infty \).
- Explain \(\lim_{x \to -\infty} f(x) = \infty \).
- Find the infinite limit \(\lim_{x \to 0^+} \frac{1}{x} \).
- Find the infinite limit \(\lim_{x \to 0^-} \frac{1}{x} \).
- Find the infinite limit \(\lim_{x \to \infty} \frac{1}{x} \).
- Find the infinite limit \(\lim_{x \to -\infty} \frac{1}{x} \).
- Find the infinite limit \(\lim_{x \to 0^+} \ln x \).
Examples and Comments

- Explain \(\lim_{x \to 1^+} f(x) = -\infty \).
- Explain \(\lim_{x \to -\infty} f(x) = \infty \).

Find the infinite limit:
- \(\lim_{x \to 0^+} \frac{1}{x} \)
- \(\lim_{x \to 0^-} \frac{1}{x} \)
- \(\lim_{x \to \infty} \frac{1}{x} \)
- \(\lim_{x \to -\infty} \frac{1}{x} \)
- \(\lim_{x \to 0^+} \ln x \)
Examples and Comments

- Explain $\lim_{x \to 1^+} f(x) = -\infty$.
- Explain $\lim_{x \to -\infty} f(x) = \infty$.
- Find the infinite limit $\lim_{x \to 0^+} \frac{1}{x}$.
- Find the infinite limit $\lim_{x \to 0^-} \frac{1}{x}$.
- Find the infinite limit $\lim_{x \to \infty} \frac{1}{x}$.
- Find the infinite limit $\lim_{x \to -\infty} \frac{1}{x}$.
- Find the infinite limit $\lim_{x \to 0^+} \ln x$.
Examples and Comments

- \(\lim_{x \to \infty} f(x) = \lim_{x \to 0^+} f(\frac{1}{x}) \)
- \(\lim_{x \to -\infty} f(x) = \lim_{x \to 0^-} f(\frac{1}{x}) \)
- If \(\lim_{x \to a} f(x) = \infty \) or \(\lim_{x \to a} f(x) = -\infty \)
 then \(\lim_{x \to a} \frac{1}{f(x)} = 0. \)
Examples and Comments

- \(\lim_{x \to \infty} f(x) = \lim_{x \to 0^+} f\left(\frac{1}{x}\right) \)

- \(\lim_{x \to -\infty} f(x) = \lim_{x \to 0^-} f\left(\frac{1}{x}\right) \)

- If \(\lim_{x \to a} f(x) = \infty \) or \(\lim_{x \to a} f(x) = -\infty \)

then

\(\lim_{x \to a} \frac{1}{f(x)} = 0. \)
Examples and Comments

\[\lim_{x \to \infty} f(x) = \lim_{x \to 0^+} f\left(\frac{1}{x}\right) \]

\[\lim_{x \to -\infty} f(x) = \lim_{x \to 0^-} f\left(\frac{1}{x}\right) \]

If

\[\lim_{x \to a} f(x) = \infty \text{ or } \lim_{x \to a} f(x) = -\infty \]

then

\[\lim_{x \to a} \frac{1}{f(x)} = 0. \]