1. Project Summary

Two cities A and B are connected by a network of highways as

![Network Diagram]

During a heavy snow storm, each highway (represented by an edge) has an independent chance of 50 percent of being closed. Find the probability that one can still drive from A to B.

This project requires some basic knowledge of graph theory and probability theory.

2. Network Outage

We may ask a more general question.

Question 2.1. Given a network of nodes, i.e., a graph, we know that every edge of the graph has a fixed independent chance of being broken. What is the probability that the network remains connected? We call this number the survival rate of the network.

We can represent such a network by a weighted graph G with the weight of an edge being the probability of this edge NOT being broken. We use the notation $s(G)$ for the probability of G remaining connected. Furthermore, we can fix two nodes A and B of G and let $s(G, A, B)$ be the probability of A and B remaining connected by a path.

Here we allow G to have multiple edges.

We start with a couple of examples and observations.
Example 2.2. If G is a tree, breaking any edge of G will render G disconnected. Therefore,

$$(2.1)\quad s(G) = w_1w_2...w_n$$

where $w_1, w_2, ..., w_n$ are the weights of all edges in G. Let A and B be two nodes G. Then A and B are joined by a unique path P in G and A and B remains connected if and only if no edges of P are broken. Therefore,

$$(2.2)\quad s(G, A, B) = w_1w_2...w_m$$

where $w_1, w_2, ..., w_m$ are the weights of all edges in P.

Example 2.3. If G consists of only two nodes A and B with n edges joining them, then

$$(2.3)\quad s(G) = 1 - (1 - w_1)(1 - w_2)...(1 - w_n)$$

where $w_1, w_2, ..., w_n$ are the weights of all edges joining A and B. More generally, if G contains two nodes A and B with n edges joining them of weights $w_1, w_2, ..., w_n$, we can replace the n edges by one edge of weight given in (2.3); $s(G)$ remains the same.

3. Recursion Algorithm

Let G be a weighted graph and e be an edge joining two nodes U and V of weight w. Suppose that there are no other edges between U and V.

We can have either e breaks or e does not.

If e breaks, let $G - e$ be the graph of G with only the edge e removed.

If e does not break, let G/e be the graph of G obtained by contracting e to one node, say, W and replacing every edge joining a node A to one of U and V by an edge of the same weight joining A to W.

Then

$$(3.1)\quad s(G) = (1 - w)s(G - e) + ws(G/e).$$

If we fix two nodes A and B of G, we have

$$(3.2)\quad s(G, A, B) = (1 - w)s(G - e, A, B) + ws(G/e, A, B).$$

Example 3.1. Consider $s(G)$ for the weighted triangle G (choose $e = AB$)
Then
\[s(G) = (1 - \frac{1}{2})s(G - e) + \frac{1}{2} s(G/e) \]
\[= \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)^2 + \frac{1}{2} \left(1 - \left(\frac{1}{2} \right)^2 \right) = \frac{1}{2} \]
where \(s(G - e) \) is computed using Example 2.2 and \(s(G/e) \) is computed using Example 2.3.

Example 3.2. Consider \(s(G, A, D) \) for (choose \(e = AB \))

Here we can use Example 2.3 to replace the multiple edge in \(G/e \):

\[G/e \]

Then
\[s(G, A, D) = (1 - \frac{1}{2})s(G - e, A, D) + \frac{1}{2} s(G/e, A, D) \]
\[= \frac{1}{2} \left(\frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{3}{4} \right) \left(\frac{1}{2} \right) = \frac{5}{16} \]
where both \(s(G - e, A, D) \) and \(s(G/e, A, D) \) are computed using Example 2.2.

632 Central Academic Building, University of Alberta, Edmonton, Alberta
T6G 2G1, CANADA
E-mail address: xichen@math.ualberta.ca