Math 209, Homework #5

- 1 (P940, Q4): Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint: f(x,y) = 4x + 6y; $x^2 + y^2 = 13$.
- **2** (**P940**, **Q6**): Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint: $f(x,y) = e^{xy}$; $x^3 + y^3 = 16$.
- **3 (P940, Q10):** Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint: $f(x, y, z) = x^2y^2z^2$; $x^2 + y^2 + z^2 = 1$.
- **4 (P940, Q16):** Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraints: f(x, y, z) = 3x y 3z; x + y z = 0, $x^2 + 2z^2 = 1$.
- **5 (P940, Q18):** Find the extreme values of f on the region described by the inequality: $f(x,y) = 2x^2 + 3y^2 4x 5$, $x^2 + y^2 \le 16$.
- **6 (P940, Q20):** Consider the problem of maximizing the function f(x,y) = 2x + 3y subject to the constraint $\sqrt{x} + \sqrt{y} = 5$.
 - (a) Try using Lagrange multipliers to solve the problem.
 - (b) Does f(25,0) give a large value than the one in part (a)?
 - (c) (optional) Solve the problem by graphing the constraint equation and several level curves of f.
 - (d) Explain why the method of Lagrange multipliers fails to solve the problem.
 - (e) What is the significance of f(9,4)?
- 7 (P941, Q41): The plane x + y + 2z = 2 interests the paraboloid $z = x^2 + y^2$ in an ellipse. Find the points on this ellipse that are nearest to and farthest from the origin.
- **8 (P947, Q56):** Find the absolute maximum and minimum values of f on the set D: $f(x,y) = e^{-x^2-y^2}(x^2+2y^2)$; D is the disk $x^2+y^2 \le 4$.
- 9 (P947, Q59): Use Lagrange multipliers to find the maximum and minimum values of f subject to the given constraint: $f(x,y) = x^2y$; $x^2 + y^2 = 1$.
- 10 (P947, Q60): Use Lagrange multipliers to find the maximum and minimum values of f subject to the given constraint: $f(x,y) = \frac{1}{x} + \frac{1}{y}$; $\frac{1}{x^2} + \frac{1}{y^2} = 1$.