Positivity IX, July 17-21, 2017 University of Alberta, Edmonton, Canada

Maria Ziemlańska

m.a.ziemlanska@math.leidenuniv.nl Leiden University

Lie-Trotter product formula for (locally) equicontinuous (and tight) Markov operators

Joint work with S.Hille

- A bit of history [1875-2001]
- New result by Kuhnemund and Wacker [2001]
- > Our goal

Our setting

- Markov operators
- > Equicontinuity and tightness
- Assumptions
- Main result-what is new
 - Convergence of the scheme
 - > Our approach

- A bit of history [1875-2001]
- New result by Kuhnemund and Wacker [2001]
- > Our goal

> Our setting

- Markov operators
- Equicontinuity
- > Assumptions
- > Main result-what is new
 - Convergence of the scheme
 - > Our approach

1970

2016

2001

 $S_{a,t} = \lim_{h \to \infty} (T_h T'_{ah})^{t/h}$

1959

Hale Trotter Lie-Trotter product formula

Strong continuity, generators

New result by Kuhnemund and Wacker [2001]

2016

 1991 Engel-Nagel counterexample (...but actually 1985 Goldstein)

Franziska Kuhnemund Markus Wacker

2001

- C_o -semigroups
- > exponentially bounded: $||T(t)|| \le Me^{\omega t}$
- Iocally Trotter stable:

$$\left| \left(T\left(\frac{t}{n}\right) S\left(\frac{t}{n}\right) \right)^n \right| \le M t_0$$

commutator condition:

 $\left| |T(t)S(t)f - S(t)T(t)f| \right| \le t^{\alpha}M|||f|||$

Universiteit Lie-Trotter product formula Leiden

2016

> Our goal (2016)

2001

Generalization of Lie-Trotter product formula to semigroups of Markov operators on spaces of measures

Motivation

Generalization of Lie-Trotter product formula to semigroups of Markov operators on spaces of measures

Piecewise deterministin Markov processes

Switching deterministic and stochastic processes

Motivation:

- A bit of history [1875-2001]
- New result by Kuhnemund and Wacker [2001]
- > Our goal

Our setting

- > Markov operators on spaces on measures
- Equicontinuity
- Assumptions
- Main result-what is new
 - Convergence of the scheme
 - > Our approach

> Markov operators on spaces of measures

> Markov operators on spaces of measures

Markov operators on spaces of measures

Markov operators on spaces of measures

Markov operators on spaces of measures

Our assumptions:

- > A1: (P_t^1) , (P_t^2) locally $(t \in [0, \delta])$ equicontinuous and tight
- > A2: $(P_{\underline{t}}^{1}P_{\underline{t}}^{2})^{n}$ locally equicontinuous and tight

A3: stability

$$\left\| \left| \left(\frac{\mathbf{P}_{t}^{1} \mathbf{P}_{t}^{2}}{n} \frac{\mathbf{P}_{t}^{2}}{n} \right)^{n} \boldsymbol{\mu}_{0} \right\|_{BL,d_{E}}^{*} \leq C |\boldsymbol{\mu}_{0}|_{\mathbf{M}_{0}}$$

> A4: commutator condition $\left| |P_t^1 P_t^2 \mu_0 - P_t^2 P_t^1 \mu_0| \right|_{BL,d_E}^* \leq t \omega_E(t) |\mu_0|_{M_0}$ $\omega_E -nondecreasing, continuous, Dini condition$

Our assumptions:

- > A1: (P_t^1) , (P_t^2) -locally $(t \in [0, \delta])$ equicontinuous and tight
- > A2: $(P_{t}^{1}P_{t}^{2})^{n}$ locally equicontinuous and tight

A3: stability

$$\left| \left| \left(\frac{\mathbf{P}_{t}^{1} \mathbf{P}_{t}^{2}}{n} \frac{\mathbf{P}_{t}^{2}}{n} \right)^{n} \boldsymbol{\mu}_{0} \right| \right|_{BL,d_{E}}^{*} \leq C |\boldsymbol{\mu}_{0}|_{\mathbf{M}_{0}}$$

> A4: commutator condition $||P_t^1 P_t^2 \mu_0 - P_t^2 P_t^1 \mu_0||_{BL,d_E}^* \leq t \omega_E(t)|\mu_0|_{M_0}$ $\omega_E -nondecreasing, continuous, Dini condition$ A family $F \in C(T, (S, d))$ is equicontinuous at point $t \in T$ if $\forall \varepsilon > 0 \exists U_{\varepsilon}$ s.t. $d_{S}(f(t), f(t')) < \varepsilon \forall t' \in U_{\varepsilon} \forall f$ $\in F$ The family F is equicontinuous if and only if it is equicontinuous at every point.

Our assumptions:

- > A1: (P_t^1) , (P_t^2) -locally $(t \in [0, \delta])$ equicontinuous and tight
- > A2: $(P_{\underline{t}}^{1}P_{\underline{t}}^{2})^{n}$ locally equicontinuous and tight

A3: stability

$$\left\| \left| \left(\frac{\mathbf{P}_{t}^{1} \mathbf{P}_{t}^{2}}{n} \right)^{n} \mu_{0} \right| \right|_{BL,d_{E}}^{*} \leq C |\mu_{0}|_{\mathbf{M}_{0}}$$

> A4: commutator condition $||P_t^1 P_t^2 \mu_0 - P_t^2 P_t^1 \mu_0||_{BL,d_E}^* \leq t \omega_E(t)|\mu_0|_{M_0}$ $\omega_E -nondecreasing, continuous, Dini condition$ $||f||_{BL,d_E} = ||f||_{\infty} + |f|_{\{Lip,d_E\}}$ $|f|_{\{Lip,d_E\}} - \text{Lipschitz constant}$ $||\cdot||_{BL,d_E}^* - \text{Dudley norm}$

Our assumptions:

- > A1: (P_t^1) , (P_t^2) -locally $(t \in [0, \delta])$ equicontinuous and tight
- > A2: $(P_{t}^{1}P_{t}^{2})^{n}$ locally equicontinuous and tight

A3: stability

$$\left| \left| \left(\frac{\mathbf{P}_{t}^{1} \mathbf{P}_{t}^{2}}{n} \frac{\mathbf{P}_{t}^{2}}{n} \right)^{n} \boldsymbol{\mu}_{0} \right| \right|_{BL,d_{E}}^{*} \leq C |\boldsymbol{\mu}_{0}|_{\mathbf{M}_{0}}$$

> A4: commutator condition $||P_t^1 P_t^2 \mu_0 - P_t^2 P_t^1 \mu_0||_{BL,d_E}^* \leq t \omega_E(t)|\mu_0|_{M_0}$ $\omega_E -nondecreasing, continuous, Dini condition$ A family P_t , $t \ge 0$ is **tight** if for every positive measure $\mu \in$ $\mathcal{M}^+(S)$, $\{P_t\mu: t \ge 0\}$ is **uniformly tight**. $\{P_t\mu: t \ge 0\}$ is **uniformly tight** if $\forall \epsilon > 0 \exists K_{\epsilon}$ *compact s*. *t*. $|P_t\mu|(S \setminus K_{\epsilon}) < \epsilon$ for all $t \ge 0$.

uniform tightness=**relative compactness of orbits** (in Dudley norm)

Comparison with K-W

Our assumptions:

- > A1: (P_t^1) , (P_t^2) locally $(t \in [0, \delta])$ equicontinuous and tight
- > A2: $(P_{\frac{t}{n}}^{1}P_{\frac{t}{n}}^{2})^{n}$ locally equicontinuous and

tight

A3: stability

$$\left| \left(\mathsf{P}^{1}_{\underline{\mathsf{t}}} \mathsf{P}^{2}_{\underline{\mathsf{t}}} \right)^{n} \mu_{0} \right| \right|_{BL,d_{E}}^{*} \leq \mathsf{C} |\mu_{0}|_{\mathsf{M}_{0}}$$

A4: commutator condition

$$\left| |P_t^1 P_t^2 \mu_0 - P_t^2 P_t^1 \mu_0| \right|_{BL,d_E}^* \le t \omega_E(t) |\mu_0|_{M_0}$$

 ω_E —nondecreasing, continuous, Dini condition

<u>Reminder (K-W setting):</u>

- C_o -semigroups
- exponentially bounded: $||T(t)|| \le Me^{\omega t}$
- locally Trotter stable:

$$\left| \left| \left(T\left(\frac{t}{n}\right) S\left(\frac{t}{n}\right) \right)^n \right| \le M t_0$$

> commutator condition: $||T(t)S(t)f - S(t)T(t)f|| \le t^{\alpha}M|||f|||$

Comparison with K-W

Our assumptions:

- > A1: (P_t^1) , (P_t^2) locally $(t \in [0, \delta])$ equicontinuous and tight
- > A2: $(P_{\frac{t}{n}}^{1}P_{\frac{t}{n}}^{2})^{n}$ locally equicontinuous and

tight

> A3: stability

$$\left| \left| \left(\mathbf{P}_{\underline{\mathbf{t}}}^{1} \mathbf{P}_{\underline{\mathbf{t}}}^{2} \right)^{n} \boldsymbol{\mu}_{0} \right| \right|_{BL, d_{E}}^{*} \leq C |\boldsymbol{\mu}_{0}|_{\mathbf{M}_{0}}$$

A4: commutator condition

$$\left| |P_t^1 P_t^2 \mu_0 - P_t^2 P_t^1 \mu_0| \right|_{BL,d_E}^* \le t \omega_E(t) |\mu_0|_{M_0}$$

 ω_E –nondecreasing, continuous, Dini condition

Reminder (K-W setting):

- C_o -semigroups
- exponentially bounded: $||T(t)|| \le Me^{\omega t}$
- Iocally Trotter stable:

$$\left| \left| \left(T\left(\frac{t}{n}\right) S\left(\frac{t}{n}\right) \right)^n \right| \le M t_0$$

> commutator condition: $||T(t)S(t)f - S(t)T(t)f|| \le t^{\alpha}M|||f|||$

Markov semigroups are usually neither strongly continuous nor bounded.

- A bit of history [1875-2001]
- New result by Kuhnemund and Wacker [2001]
- > Our goal
- Our setting
 - Markov operators on spaces on measures
 - Equicontinuity
 - > Assumptions
- Main result-what is new
 - Convergence of the scheme
 - Our approach

Iniversiteit Main theorem

<u>Reminder:</u>

A1: (P_t^1) , (P_t^2) -locally <u>equicontinuous</u> and <u>tight</u> A2: $(P_t^1 P_t^2)^n$ - locally <u>equicontinuous</u> and <u>tight</u> A3: <u>stability</u> $\left| \left| (P_t^1 P_t^2)^n \mu_0 \right| \right|_{BL,d_E}^* \leq C |\mu_0|_{M_0}$ A4: <u>commutator condition</u> $\left| |P_t^1 P_t^2 \mu_0 - P_t^2 P_t^1 \mu_0| \right|_{BL,d_E}^*$ $\leq t\omega(t) |\mu_0|_{M_0}$

Main result

Let $(P_t^1)_t$, $(P_t^2)_t$ be semigroups of regular Markov-Feller operators. Assume that A1-A4 hold. Let $\mu \in \mathcal{M}^+(S)$. Then there exists $\nu \in \mathcal{M}^+(S)$ such that

$$\left\| \left(\frac{P_t^1 P_t^2}{n} \right)^n \mu - \nu \right\|_{BL,d}^* \to 0 \text{ as } n \to \infty.$$

We can show that:

A composition of equicontinuous Markov operators is equicontinuous

<u>Topological</u> properties:

 Equicontinuity is equal to equicontinuity on compact sets

We can show that:

 A composition of equicontinuous Markov operators is equicontinuous

Schur-like property:

Weak convergence of | |_{TV} – bounded sequences in the space of signed measures implies strong convergence

S.Hille, T.Szarek, D.Worm, MZ "On a Schurlike Property for Spaces of Measures" submitted, available on Arxiv

<u>Topological</u> properties:

 Equicontinuity is equal to equicontinuity on compact sets

We can show that:

 A composition of equicontinuous Markov operators is equicontinuous

Conclusion

- Generalizations of Kuhnemund-Wacker and Colombo-Corli setting
- No assumptions on generators/domains of generators (motivated by an example in Engel-Nagel/Goldstein)
- Open problems:
- Relations between generators/domains of generators and equicontinuity/tightness (in progress)
- …and much more

Positivity IX, July 17-21, 2017 University of Alberta, Edmonton, Canada

Thank you!

Maria Ziemlańska

m.a.ziemlanska@math.leidenuniv.nl Leiden University