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 New result by Kuhnemund and Wacker [2001]

Lie-Trotter product formula

2001 2016

Franziska Kuhnemund 
Markus Wacker

𝑼 𝒕 𝒇 = lim
𝑛→∞

𝑻
𝒕

𝒏
𝑺

𝒕

𝒏

𝒏

𝒇

 C0 -semigroups

 exponentially bounded: 𝑇 𝑡 ≤ 𝑀𝑒𝜔𝑡

 locally Trotter stable: 

𝑇
𝑡

𝑛
𝑆

𝑡

𝑛

𝑛

≤ 𝑀𝑡0

 commutator condition:

𝑇 𝑡 𝑆 𝑡 𝑓 − 𝑆 𝑡 𝑇 𝑡 𝑓 ≤ 𝑡𝛼𝑀|| 𝑓 ||

 1991 Engel-Nagel 
counterexample (...but 
actually 1985 Goldstein)



 Our goal (2016)

Lie-Trotter product formula

2001 2016

Sander Hille
MZ

Generalization of Lie-Trotter 
product formula to semigroups of 

Markov operators on spaces of 
measures



 Motivation

Lie-Trotter product formula

2001 2016

Sander Hille
MZ

Generalization of Lie-Trotter product formula 
to semigroups of Markov operators on spaces 

of measures

Motivation: 

Piecewise deterministin Markov processes

Switching deterministic and stochastic processes
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 Markov operators on spaces of measures

Our setting
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Our setting

𝑺 : Polish space

(separable, 
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𝑷𝒕:𝓜
+(𝑺) →𝓜+ 𝑺

Markov operators
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Dual operators (for 

Markov-Feller 
operators)

ℳ+ 𝑺 :
Positive measures

Most papers concentrate 
on the dual operators

We concentrate on 
Markov operators

Additive, ℝ+-homogenous, 
𝑃𝜇

𝑇𝑉
= 𝜇

𝑇𝑉
, 𝜇 ∈

ℳ+(𝑆)
𝜇

𝑇𝑉
= |𝜇|(𝑆)
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 Equicontinuity and tightness

Our setting

A family Pt, t ≥ 0 is tight if for 
every positive measure 𝜇 ∈
ℳ+ 𝑆 , {𝑃𝑡𝜇: 𝑡 ≥ 0} is uniformly 
tight. 
{𝑃𝑡𝜇: 𝑡 ≥ 0} is uniformly tight if 
∀𝜖 > 0∃𝐾𝜖 −
𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑠. 𝑡. 𝑃𝑡𝜇 𝑆\K𝜖 < 𝜖
for all 𝑡 ≥ 0.

uniform tightness=relative 
compactness of orbits (in 
Dudley norm)
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Main result

Let 𝑃𝑡
1

𝑡, 𝑃𝑡
2

𝑡 be semigroups of 
regular Markov-Feller operators. Assume 
that A1-A4 hold. Let 𝜇 ∈ ℳ+(𝑆). Then 
there exists 𝜈 ∈ ℳ+(𝑆) such that

𝑃𝑡
𝑛

1𝑃𝑡
𝑛

2 𝑛
𝜇 − 𝜈

∗

𝐵𝐿,𝑑

→ 0 𝑎𝑠 𝑛 → ∞.

Main theorem
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n

1Pt
n
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Our approach and tools we use

𝑺 : Polish

𝑷𝒕

𝑼𝒕

ℳ+ 𝑺

Topological 
properties:

Equicontinuity is 
equal to 
equicontinuity on 
compact sets

Schur-like property:

Weak convergence of | |𝑇𝑉 −
bounded sequences in the space of  
signed measures implies strong 
convergence

S.Hille, T.Szarek, D.Worm, MZ „On a Schur-
like Property for Spaces of Measures” 
submitted, available on Arxiv

We can show that:

A composition of 
equicontinuous Markov 
operators is 
equicontinuous



Generalizations of Kuhnemund-Wacker and Colombo-Corli setting

No assumptions on generators/domains of generators (motivated by an 

example in Engel-Nagel/Goldstein)

Open problems: 

 Relations between generators/domains of generators and 

equicontinuity/tightness (in progress)

 ...and much more

Conclusion
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