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Theorem (W. Arendt, 1986)

Let A be the generator of a disjointness preserving semigroup

T (t)t≥0 on a Banach lattice X . Then A is local (i.e. x ⊥ y implies

Ax ⊥ y, x ∈ D(A), y ∈ X).

Theorem (W. Arendt, 1986)

Let A be the generator of C0-semigroup T (t)t≥0 on Banach lattice

X with order continuous norm. TFAE:

(i) T (t)t≥0 is a semigroup of lattice homomorphism.

(ii) D(A) is a sublattice and A is local.
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• (X ,K ) partially ordered vector space (POVS), for every finite

M ⊆ X , the set of all upper bounds of M defined by

Mu = {x ∈ X : x ≥ m, ∀m ∈ M}, the set of all lower bounds by

M l.

• X is pre-Riesz space if ∀x , y , z ∈ X , {x + y , x + z}u ⊆ {y , z}u

implies x ∈ K , every directed Archimedean POVS is pre-Riesz.

• X is directed, a seminorm ‖·‖ on X is regular if

‖x‖ = inf{‖y‖ : − y ≤ x ≤ y}, x ∈ X .

• Semimonotone if ∃M ∈ R such that for every x , y ∈ X with

0 ≤ x ≤ y one has ‖x‖ ≤ M‖y‖.

• x , y ∈ X are called disjoint, in symbol x ⊥ y , if

{x + y ,−x − y}u = {x − y ,−x + y}u.
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• D ⊆ X is order dense in X if x = inf{d ∈ D : x ≤ d}, x ∈ X .

Theorem (M. van Haandel, 1993)

Let X be a POVS, TFAE:

(i) X is a pre-Riesz space.

(ii) There exist a vector lattice X ρ and a bipositive linear map

i : X → X ρ such that i [X ] is order dense in X ρ, and generates

X ρ as a vector lattice. Moreover, all spaces X ρ are isomorphic

as vector lattices.

• (X ρ, i) is called the Riesz completion of X .
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Lemma

If one of following statements holds,

(i) (X ,K ) is a pre-Riesz space with a regular norm ‖·‖ such that

K is closed.

(ii) (X ,K , ‖·‖) is an ordered Banach space with semimonotone

norm.

Then every band in X is closed.

• B ⊆ X , Bd = {x ∈ X : x ⊥ y , ∀y ∈ B}.

• B ⊆ X is a band in pre-Riesz space X if Bdd = B.
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Definition

Let X be a POVS and let T : X ⊇ D(T )→ X be a linear

operator.

(i) T is called local if for every x ∈ D(T ), y ∈ X with x ⊥ y it

follows that Tx ⊥ y .

(ii) T is called band preserving if for every band B in X one has

T (B ∩ D(T )) ⊆ B.
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X a pre-Riesz space, T : X ⊇ D(T )→ X a linear operator.

• Properties

T is local ⇔ T is band preserving.

If S : X ⊇ D(S)→ X and T : D(T ) ⊇ X → X are local

operators and α, β ∈ R, then

αS + βT : X ⊇ D(S) ∩ D(T )→ X is a local operator.

If S : X ⊇ D(S)→ X and T : X ⊇ D(T )→ D(S) ⊆ X are

local operators, then ST : X ⊇ D(T )→ X is a local operator.
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• Let X , Y be pre-Riesz spaces, i : X → Y is a Riesz*

homomorphism, if for a finite M ⊆ X we have i [Mul] ⊆ i [M]ul.

Theorem (M. van Haandel, 1993)

Let X ,Y be pre-Riesz spaces with Riesz completions (X ρ, iX ) and

(Y ρ, iY ) respectively. Let T : X → Y be a linear operator. Then

there exists a linear lattice homomorphism Tρ : X ρ → Y ρ if and

only if T is a Riesz* homomorphism such that Tρ ◦ iX = iY ◦ T.

• X

iX
��

T // Y

iY
��

X ρ Tρ
// Y ρ
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Lemma

Let X , Y be pre-Riesz spaces, i : X → Y a bipositive Riesz*

homomorphism.

Then for every x , y ∈ X we have x ⊥ y ⇐⇒ i(x) ⊥ i(y).

Proposition

Let X be a pre-Riesz space, T : X ⊇ D(T )→ X a bijective linear

operator, i : D(T )→ X is a Riesz* homomorphism.

If T and T−1 are positive, T is local, then T−1 is also local.
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Theorem (W. Arendt, 1986)

Let A be the generator of a disjointness preserving semigroup

T (t)t≥0 on a Banach lattice X . Then A is local.

Theorem

Let X be an ordered Banach space with semimonotone norm,

T (t)t≥0 ∈ L(X ) a disjointness preserving C0-semigroup with

generator A. Then A is local.
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Example

Let A be the second derivative operator that A is local. The

one-dimensional diffusion semigroup generated by A is given by

T (t)f (x) =

∫ 1

0
Kt(x , y)f (x)dy ,

with kernel

Kt(x , y) = 1 + 2
∞∑
n=1

exp(−π2n2t) cos(πnx) · cos(πny).

Kt(·, ·) is a positive, continuous on [0, 1]2.

However, T (t)t≥0 is not disjointness preserving on C[0, 1].
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Theorem

Let X be an ordered Banach space with a semimonotone norm. If

A ∈ L(X ) is local, then exp(tA) is local for every t ∈ R.

Example

(i) Translation Semigroup

X := Cub(R), T (t)x(s) := x(s + t), s ∈ R, x ∈ X , t ≥ 0. T (t) is a

C0-semigroup with generator A given by, Ax := x ′, x ∈ D(A).

Then A is local (and unbounded), T is disjointness preserving, but

not local.
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Example

(ii) Multiplication Semigroup

X := C0(Ω), Ω is a locally compact Hausdorff space, q : Ω→ R be

continuous and bounded above. Define Tq(t)t≥0 : X → X by

Tq(t)x = etq(t)x , x ∈ X .

Tq(t)t≥0 is a C0-semigroup with generator A given by

Ax = qx , x ∈ D(A). Then A is local and Tq(t) is local for every

t ∈ [0,∞).
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Theorem (W. Arendt, 1986)

Let A be the generator of C0-semigroup T (t)t≥0 on Banach lattice

X with order continuous norm. TFAE:

(i) T (t)t≥0 is a semigroup of lattice homomorphism.

(ii) D(A) is a sublattice and A is local.

Theorem

Let X be an ordered Banach space with semimonotone norm,

T (t)t≥0 a C0-semigroup with generator A. If A : X ⊇ D(A)→ X

is local and there exists a λ0 ∈ ρ(A) ∩ R such that for every

λ ∈ ρ(A) with λ ≥ λ0 we have that (λI − A)−1 : X → D(A) ⊆ X

is local, then T (t)t≥0 is local.
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Applies to

X = Pol2[0, 1], K = {p ∈ X ; p(x) ≥ 0, x ∈ [0, 1]} is an order dense

subspace of vector lattice C [0, 1]. Let q ∈ C ([0, 1)) be bounded

above. If A : X ⊇ D(A)→ X , x 7→ qx is local and (λI − A)−1 is

local for λ > sups q(s). Then T (t)t≥0 is local.

Does not apply to

X is asked to be complete with semimonotone norm. However, e.g.

• differential function space Ck(Ω)-spaces,

• Sobolev spaces W p,q(Ω),

is not suitable.
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Thank you!
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