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Michael Elliott

Michael Elliott completed a Ph.D. with me in 2001. Most of
the results that I will talk about today are his, but he is unable
to be here today and has given me permission to talk about
his work.



The Riesz-Kantorovich Formulae
It has been known since the inception of our subject that if F
is a Dedekind complete Riesz space and the linear operator
T : E → F is order bounded then T has a modulus given, on
E+, by the formula

|T |(x) = sup{Ty : |y| ≤ x}.

This, and similar formulae for T+ and T−, are the
Riesz-Kantorovich formulae. There are other circumstance
when it is known that an order bounded operator has a
modulus given by the Riesz-Kantorovich formula. For example,
in the Banach lattice setting this is true for all order bounded
operators if:

1. E is atomic with an order continuous norm.

2. E has separable order intervals and F is Dedekind
σ-complete.



The Riesz-Kantorovich Formulae

These are conditions that guarantee that every order bounded
operator has a modulus and therefore that the order bounded
and regular operators coincide and that they form a Riesz
space with the lattice operations given the the
Riesz-Kantorovich formulae.

Whether or not the modulus of an operator has to be given by
the Riesz-Kantorovich formula has been an outstanding
question for many years, even though it has rarely been
explicitly posed. Looking back, I think that there are really two
questions to ask about operators between Riesz spaces.



The Riesz-Kantorovich Formulae

1. If Lr(E,F ) is a Riesz space, are the lattice operations
given by the Riesz-Kantorovich formulae?

2. If T ∈ Lr(E,F ) has a modulus, is that modulus given by
the Riesz-Kantorovich formula?

In the remainder of this talk, I will survey what I know about
the answer to these two separate questions in the Banach
lattice setting.



The Lattice Problem

An important step towards at least a partial solution of the
first problem was given by van Rooij in 1984.

A Banach lattice E has property (?) if for every sequence (fn)
in E∗+ which converges σ(E∗, E) to f ∈ E∗+ we have
|fn − f | → 0 for σ(E∗, E).

Theorem (van Rooij, 1984)

If E and F are Banach lattices such that Lr(E,F ) is a Riesz
space then either E has property (?) or F is Dedekind
σ-complete.



The Lattice Problem

Property (?) is not very intuitive, but in many cases there is a
simpler description. In particular:

Theorem (Chen Zili & W., 1999)

If E is a separable Banach lattice then E has property (?) if
and only if E is atomic with an order continuous norm.



The Lattice Problem
Putting these two results together with the cases cited in the
previous section, we have:

Theorem

If E and F are Banach lattices and E is separable, then
Lr(E,F ) is a Riesz space if and only if either

1. E is atomic with an order continuous norm, or

2. F is Dedekind σ-complete.

In particular, the lattice operations are given by the
Riesz-Kantorovich formulae.

The observant among you will note the gap between the
conditions that E is separable and that it have separable order
intervals. So far I have been unable to prove that a Banach
lattice with separable order intervals and property (?) must be
atomic with order continuous norm.



The Lattice Problem

What can we say if we get away from separability? It turns out
that we can say something if we assume order continuity of
the norm in E. The key to being able to obtain necessary and
sufficient conditions is to be able to work with Banach lattices
where every non-trivial order interval has the same density
characteristic (i.e. the smallest cardinal of a dense subset.) We
call such Banach lattices homogeneous. If the density
character of order intervals in a homogeneous Banach lattice
E is a then we say that E is a-homogeneous.



The Lattice Problem

Banach lattices with an order continuous norm can be
decomposed into sums of homogeneous Banach lattices.

Theorem (Elliott, 2001)

Let E be a Banach lattice with an order continuous norm.
There is a unique ordinal τ , a cofinal subset Σ of τ and a
pairwise disjoint collection (Eσ)σ∈Σ of bands in E such that
Eσ is ℵσ-homogeneous and E = at(E)⊕

∑
σ∈Σ Eσ, where

at(E) is the band generated by the atoms in E.



The Lattice Problem

Elliott originally gave an ingenious, but technically difficult,
abstract proof of this theorem. A simpler way to understand it
is to use the well-known embedding of a Banach lattice E
with an weak order unit and an order continuous norm
between L∞(µ) and L1(µ). In the case that there is no weak
order unit, take a maximal disjoint family in E+, carry out this
embedding for each generated ideal and embed E into the
(uncountable) `1 sum of these embeddings. Given a result of
Amemiya that the order continuous norm and the L1 norms
generate the same topology on order intervals, this reduces the
proof to the case E = L1(µ). That follows easily from
Maharam’s representation of abstract L-spaces, which is
nowhere near as well known as Kakutani’s even though it is
potentially much more useful.



The Lattice Problem
In the statement of the following result, 2 = {0, 1}, γ is the
measure on 2 with γ(0) = γ(1) = 1

2
, and aF denotes the

`1-direct sum of a many copies of F . It is routine to show that
L1(2a, γa) is a-homogeneous.

Theorem (Maharam, 1942)

Let E be an AL-space. There exists a unique well-ordered
family (aσ)−1≤σ<τ such that:

1. for each σ ≥ 0, each aσ is equal to 0, or to 1, or is
uncountable.

2. {σ : aσ 6= 0} is cofinal in τ , and

3. Y is isometrically order isomorphic to
`1(a−1)⊕1 `1

(
aσL1(2ℵσ , γℵσ); 0 ≤ σ < τ

)
.



The Lattice Problem

The fact that the decomposition of a Banach lattice with an
order continuous norm is indexed by a family defined by a
strict inequality cannot be avoided, nor can the subsequent
complication in the statement of the main result coming up.

If a is an infinite cardinal, we say that a Banach lattice F is
a-complete if every non-empty set, of cardinality at most a
which is bounded above, has a supremum. We say that F is
<a-complete if every non-empty set, of cardinality strictly less
than a which is bounded above, has a supremum.



The Lattice Problem

Theorem (Elliott, 2001)

Let E be a Banach lattice with an order continuous norm and
F be any Banach lattice. Lr(E,F ) is a Riesz space if and
only if either

1. E is atomic with an order continuous norm or

2. F is Dedekind <a-complete where a is the smallest
cardinal that is greater than the density character of every
order interval in E.

In particular, the lattice operations are given by the
Riesz-Kantorovich formulae.

An uncountable cardinal is weakly inaccessible if it is a regular
limit cardinal. Their existence cannot be proved within ZFC.



The Lattice Problem

Theorem (Elliott, 2001)

Assume there are no weakly inaccessible cardinals. Let E be a
Banach lattice with an order continuous norm and F be any
Banach lattice. Lr(E,F ) is a Riesz space if and only if either

1. E is atomic with an order continuous norm or

2. F is Dedekind a-complete where a is the smallest cardinal
that is greater than or equal to the density character of
every order interval in E.

In particular, the lattice operations are given by the
Riesz-Kantorovich formulae.

Elliott also gave an example to show that the preceding result
is false if there is a weakly inaccessible cardinal.



The Individual Operator Problem

In October 2014, Michael sent me an counterexample to the
individual operator problem. I, and several other people, have
checked the proof carefully and I have rewritten the proof in
my own terms to convince myself of its correctness. I will
describe the example, but refrain through lack of time, from
going into details of the proofs. The surprising feature of the
example, to my mind, is that is not at all that exotic. The
domain is L1([0, 1]), the range space is a C(K) and the
operator is constructed in a familiar fashion.



The Individual Operator Problem

Definition

If A is a non-empty set and n ∈ N∗ = N ∪ {0} then An will
denote the set of all n-tuples from A and we set
T(A) =

⋃∞
n=0A

n. When it is necessary to refer to the empty
tuple (), we use the notation ∅. If τ ∈ T(A), we write
τ = (τ0, τ1, . . . , τn−1) and call n the length of τ . If
σ, τ ∈ T(A), with lengths m and n respectively, then we set
σ ⊕ τ = (σ0, . . . , σm−1, τ0, . . . , τn−1).

If n ∈ N∗ then 3n = {0, 1, 2}n has precisely 3n elements so
there is a bijection φn between {0, 1, . . . , 3n − 1} and 3n.
Using any, arbitrary but fixed, choice of φn we may define
Φn : N∗ → 3n ⊂ T(3) by Φn(k) = φn(k mod 3n), so that
Φn(k) cycles through the elements of 3n.



The Individual Operator Problem

The range of the operators in Elliott’s example is a closed
sublattice of `∞

(
T(N∗)

)
. We write the elements of this space

as x = (xτ ) where τ ∈ T(N∗). Define

F = {x = (xτ ) : lim
k→∞

xτ⊕{k} = xτ∀τ ∈ T(N∗)}.

It will be clear that F is a sublattice of `∞
(
T(N∗)

)
containing

the constants, which is closed under the supremum norm, so
that with the supremum norm F is an AM-space with an order
unit and is hence isometrically order isomorphic to C(K) for
some compact Hausdorff space K.



The Individual Operator Problem

The domain of the operators in Elliott’s example is just
L1([0, 1]). We need a particular way of partitioning [0, 1],
using elements of T(3). Define E∅ = [0, 1], recalling that
∅ = () ∈ T(3). Once we have partitioned [0, 1] into 3n

measurable subsets each of measure 3−n, {Eτ : τ ∈ 3n}, we
obtain the next level of partitioning by partitioning Eτ into
three measurable subsets of equal measure and label them
Eτ⊕(0), Eτ⊕(1) and Eτ⊕(2).



The Individual Operator Problem

We define a system of functions, sτ indexed by elements of
T(N∗) and write S(sτ ) for the support, specified up to a set of
measure zero, of sτ . Start by defining s∅ to be the zero
function on [0, 1]. Suppose that τ ∈ T(N∗) with length n− 1
and sτ has been defined. If k ∈ N∗, define

Gτ⊕(k) =

{
EΦn(k) if EΦn(k) is disjoint from S(sτ )

∅ otherwise.

It is important that this definition depends, for a given τ , only
on k mod 3n. Now set

sτ⊕(k) = sτ + rk1Gτ⊕(k)
,

where rk is the k’th Rademacher function.



The Individual Operator Problem

Example (Elliott, 2014)

The operator S ∈ Lr
(
L1([0, 1]), F

)
, defined by the formula

Sf =
(
sτ (f)

)
τ∈T(N∗)

,

where sτ (f) =
∫ 1

0
sτ (t)f(t) dt, has a modulus which is not

given by the Riesz-Kantorovich formula.
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