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Does every bounded linear operator acting on a separable
(complex) Banach space have a closed non-trivial invariant
subspace?

Aronszajn and Smith - for compact operators

Lomonosov - for operators commuting with a compact
operator

Enflo - first example of a bounded operator without invariant
subspaces

Read - bounded operator on ¢; without invariant subspaces
Argyros and Haydon - example of a Banach space such that
every bounded operator is a compact perturbation of a
multiple of identity

question still open for f, reflexive Banach spaces, dual
operators, positive operators, etc...
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A closely related question

Question

Given a bounded linear operator T acting on a complex Banach
space X, can we perturb it by a finite rank operator F such that
T + F has an invariant subspace of infinite dimension and
codimension in X7?
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space X, can we perturb it by a finite rank operator F such that
T + F has an invariant subspace of infinite dimension and
codimension in X7?

For Hilbert spaces: Does there exist Y infinite dimensional and
with infinite dimensional orthogonal complement such that
(I — P) TP is finite rank (P is the orthogonal projection onto Y')?

Equivalently, does there exist Y infinite dimensional and with

infinite dimensional orthogonal complement Y~ such that for the
* *

decomposition H =Y @ Y+ we have T = [ F o ] with F finite

rank?
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Related results

Theorem(Brown, Pearcy, 1971)

Let T € B(H) and € > 0. Then there exists a scalar A and a
decomposition of # = Y @ Y into infinite dimensional subspaces

such that the corresponding matrix representation of T has the
form T = [ Al 7__— K I ] where K and F are compact and have

norms at most €.
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Let T € B(H) and € > 0. Then there exists a scalar A and a
decomposition of # = Y @ Y into infinite dimensional subspaces

such that the corresponding matrix representation of T has the
form T = [ Al 7__— K I ] where K and F are compact and have

norms at most €.

In particular, for any T € B(#) there exists Y infinite dimensional
with infinite dimensional orthogonal complement such that Y is
invariant under T — F, where F := (/ — P) TP is compact.

Theorem(Voiculescu, 1976)

Under the same hypotheses, T has the form T = [ D ]

F *
where F; and F, are compact with norms at most ¢.
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An equivalent formulation: almost-invariant half-spaces
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paper by Androulakis, Popov, T., Troitsky in 2009.
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An equivalent formulation of this problem was first introduced in a
paper by Androulakis, Popov, T., Troitsky in 2009.

Definitions(Androulakis, Popov, T., Troitsky, 2009)

If X is a Banach space, T € B(X) and Y is a subspace of X, then
Y is called almost invariant for T, or T-almost invariant if
there exists a finite dimensional subspace M of X such that
T(Y)S Y+ M.

A subspace Y of a Banach space X is called a half-space if it is of
both infinite dimension and infinite codimension in X.

Almost invariant half-space problem

Does every bounded linear operator on a Banach space have
almost invariant half-spaces?
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Almost invariant half-space problem

Proposition(APTT, 2009)

Let T € B(X) and Y C X be a half-space. Then Y is almost
invariant under T if and only if Y is invariant under T + F for
some finite rank operator F.
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Almost invariant half-space problem

Proposition(APTT, 2009)

Let T € B(X) and Y C X be a half-space. Then Y is almost
invariant under T if and only if Y is invariant under T + F for
some finite rank operator F.

Proposition(APTT, 2009)

Let T be an operator on a Banach space X. If T has an almost
invariant half-space then so does its adjoint T*.
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Results

Theorem (APTT, 2009)
Let X be a Banach space and T € B(X) satisfy the following:
Q Thasno—eigenvalues:

@ The unbounded component of the resolvent contains
{0 < |z| < €} for some ¢ > 0.
© There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with at most
1-dimensional "error”.
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Results

Theorem (Popov, T., 2013)

Let T € B(X) be such that 9o(T)\ 0p(T) # 0. Then T admits
an almost-invariant half-space with error at most one.
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Theorem (Popov, T., 2013)

Let T € B(X) be such that 9o(T)\ 0p(T) # 0. Then T admits
an almost-invariant half-space with error at most one.

Corollary

Let X be reflexive and T € B(X) be such that one of T or T* has
a boundary point of the spectrum which is not an eigenvalue. Then
T admits an almost-invariant half-space with error at most one.

Note that an operator T € B(X) which has no invariant subspaces
cannot have any eigenvalues. It follows from the previous theorem
that such an operator has an almost-invariant half-space.In
particular, all known counterexamples to the invariant subspace
problem (e.g. the operators constructed by Enflo or Read) are not
counterexamples to the almost-invariant half-space problem.

9/23



Theorem (PT, 2013)

Let X be reflexive and T € B(X). Then T admits an
almost-invariant half-space with error at most one.

10/23



Theorem (PT, 2013)
Let X be reflexive and T € B(X). Then T admits an
almost-invariant half-space with error at most one.

When 9o(T)\ op(T) # 0 or do(T*)\ op(T*) # 0 : previous
theorem

10/23



Theorem (PT, 2013)

Let X be reflexive and T € B(X). Then T admits an
almost-invariant half-space with error at most one.

When 9o(T)\ op(T) # 0 or do(T*)\ op(T*) # 0 : previous
theorem

When 90 (T)\ 0p(T) =0 and do(T*) \ 0p(T*) = 0: an
important ingredient is the main theorem from APTT(2009).
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For Hilbert spaces:

Corollary

For any T € B(H) there exist an infinite dimensional subspace Y
with infinite dimensional orthogonal complement such that

(I — P)TP has rank at most one, where P is the orthogonal
projection onto Y.
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For Hilbert spaces:

Corollary

For any T € B(H) there exist an infinite dimensional subspace Y

with infinite dimensional orthogonal complement such that

(I — P)TP has rank at most one, where P is the orthogonal

projection onto Y.

Equivalently, relative to the decomposition H = Y @ Y, T has
*

the form T = = : where F has rank one.
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Results: Perturbations of small norm

Theorem (PT, 2013)

Let T € B(X) such that there exists A € da(T) which is not an
eigenvalue. Then for any € > 0, T has an almost invariant
half-space Y: such that (T — A/)}y, is compact and

(T =AMyl <e
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Theorem(Brown, Pearcy, 1971)

Let T € B(H) and € > 0. Then there exists a scalar A and a
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Corollary

Let T € B(H) such that there exists A € o (T) which is not an
eigenvalue. Then for any € > 0, there exists a decomposition of
H =Y @ Y into infinite dimensional subspaces such that the
corresponding matrix representation of T has the form

M+ K
7= [ !
both have norms at most ¢.

I ] where K is compact, F has rank one, and
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Results: Perturbations of small norm

Theorem (T, Wallis, 2017 )
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that for every € > 0 there is an operator F € B(X) of rank < d
satisfying ||F|| < &, and such that T 4+ F admits an IHS.
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The non-reflexive case

Theorem (T,preprint, 2017)

Let X be a Banach space and T € B(X) a bounded operator such
that 0o (T*) \ op(T*) # 0. Then for any € > 0 there exists a rank
one operator F with ||F|| < € such that T + F has an invariant
half-space.

Theorem (T,preprint, 2017)

Let X be a Banach space and T € B(X) a bounded operator.
Then for any € > 0 there exists a finite rank operator F with

||F|| < e such that T + F has an invariant half-space. Moreover, if
Do (T)\op(T) # 0 or do(T*)\ op(T*) # 0, F can be taken to be
rank one.
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Theorem(Brown, Pearcy, 1971)

Let T € B(H) and € > 0. Then there exists a scalar A and a
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Theorem(Brown, Pearcy, 1971)

Let T € B(H) and € > 0. Then there exists a scalar A and a
decomposition of H = Y @ Y into infinite dimensional subspaces
such that the corresponding matrix representation of T has the

form T:[)\/:__K

norms at most €.

I ] where K and F are compact and have

Theorem(Popov, T, 2013)

If A€ 9o(T)\ op(T), then for any € >0, T has the form
| AT+ K

T - [ !

both have norms at most €.

I ] where K is compact, F has rank one, and

Question: Can we also get F rank one when 9o (T) \ 0,(T) = 07
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The Method (sketch)

For a nonzero vector e € X and for A € C\o(T) define a vector h)
in X by
hy = (M= T) }(e).
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The Method (sketch)

For a nonzero vector e € X and for A € C\o(T) define a vector h)
in X by
hy = (M= T) }(e).

Observe that ()\I — T) hy = e, hence

7FY7A = /\I7A — €

Hence, for a subset A C C\o(T), the closed subspace Y of X
defined by
Y = span{hA: A€ A}

is a T-almost invariant subspace (which is not not necessarily a
half-space).
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The Method (sketch)

If (xn)n is a basic sequence then Span{xz,} is a half subspace of
span{x} .
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The Method (sketch)

If (xn)n is a basic sequence then Span{xz,} is a half subspace of

span{x,} .

We try to find e € X and a sequence (\,), in the resolvent such
that (hy,)n is basic sequence.

Old criterion for extracting basic sequences:

Theorem(Kadets, Petczynski, 1965)
Let S be a bounded subset of a Banach space X such that
0¢ S Then the following are equivalent:

@ S fails to contain a basic sequence.
—weak

@ 5" is weakly compact and 0 ¢ S .
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The Method (sketch)

For the non-reflexive case an important ingredient is the following
theorem.

Theorem (Johnson, Rosenthal, 1972)

If (x) is a semi-normalized, w*-null, sequence in a dual Banach
space X*, then there exists a a basic subsequence (y;) of (x}),

and a bounded sequence (y,) in X such that y/(y;) = d;; for all
1<, < oo.
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Thank you!
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