The almost-invariant subspace problem for Banach spaces

Adi Tcaciuc

MacEwan University, Edmonton, Canada

Positivity IX, University of Alberta, July 19, 2017
Motivation

Invariant subspace problem

Does every bounded linear operator acting on a separable (complex) Banach space have a closed non-trivial invariant subspace?

Aronszajn and Smith - for compact operators
Lomonosov - for operators commuting with a compact operator
Enflo - first example of a bounded operator without invariant subspaces
Read - bounded operator on ℓ_1
Argyros and Haydon - example of a Banach space such that every bounded operator is a compact perturbation of a multiple of identity

question still open for l_2, reflexive Banach spaces, dual operators, positive operators, etc...
Motivation

Invariant subspace problem
Does every bounded linear operator acting on a separable (complex) Banach space have a closed non-trivial invariant subspace?

- Aronszajn and Smith - for compact operators
Motivation

Invariant subspace problem

Does every bounded linear operator acting on a separable (complex) Banach space have a closed non-trivial invariant subspace?

- Aronszajn and Smith - for compact operators
- Lomonosov - for operators commuting with a compact operator
Motivation

Invariant subspace problem

Does every bounded linear operator acting on a separable (complex) Banach space have a closed non-trivial invariant subspace?

- Aronszajn and Smith - for compact operators
- Lomonosov - for operators commuting with a compact operator
- Enflo - first example of a bounded operator without invariant subspaces
Motivation

Invariant subspace problem

Does every bounded linear operator acting on a separable (complex) Banach space have a closed non-trivial invariant subspace?

- Aronszajn and Smith - for compact operators
- Lomonosov - for operators commuting with a compact operator
- Enflo - first example of a bounded operator without invariant subspaces
- Read - bounded operator on ℓ_1 without invariant subspaces
Motivation

Invariant subspace problem

Does every bounded linear operator acting on a separable (complex) Banach space have a closed non-trivial invariant subspace?

- Aronszajn and Smith - for compact operators
- Lomonosov - for operators commuting with a compact operator
- Enflo - first example of a bounded operator without invariant subspaces
- Read - bounded operator on ℓ_1 without invariant subspaces
- Argyros and Haydon - example of a Banach space such that every bounded operator is a compact perturbation of a multiple of identity
Motivation

Invariant subspace problem

Does every bounded linear operator acting on a separable (complex) Banach space have a closed non-trivial invariant subspace?

- Aronszajn and Smith - for compact operators
- Lomonosov - for operators commuting with a compact operator
- Enflo - first example of a bounded operator without invariant subspaces
- Read - bounded operator on ℓ_1 without invariant subspaces
- Argyros and Haydon - example of a Banach space such that every bounded operator is a compact perturbation of a multiple of identity
- question still open for l_2, reflexive Banach spaces, dual operators, positive operators, etc...
A closely related question

Question

Given a bounded linear operator T acting on a complex Banach space X, can we perturb it by a finite rank operator F such that $T + F$ has an invariant subspace of infinite dimension and codimension in X?

For Hilbert spaces: Does there exist Y, infinite dimensional and with infinite dimensional orthogonal complement such that $(I - P)TP$ is finite rank (P is the orthogonal projection onto Y)?

Equivalently, does there exist Y, infinite dimensional and with infinite dimensional orthogonal complement Y^\perp such that for the decomposition $H = Y \oplus Y^\perp$ we have $T = \begin{bmatrix} * & * \\ * & F \end{bmatrix}$ with F finite rank?
A closely related question

Question

Given a bounded linear operator T acting on a complex Banach space X, can we perturb it by a finite rank operator F such that $T + F$ has an invariant subspace of infinite dimension and codimension in X?

For Hilbert spaces: Does there exist Y infinite dimensional and with infinite dimensional orthogonal complement such that $(I - P)TP$ is finite rank (P is the orthogonal projection onto Y)?
A closely related question

Question

Given a bounded linear operator T acting on a complex Banach space X, can we perturb it by a finite rank operator F such that $T + F$ has an invariant subspace of infinite dimension and codimension in X?

For Hilbert spaces: Does there exist Y infinite dimensional and with infinite dimensional orthogonal complement such that $(I - P)TP$ is finite rank (P is the orthogonal projection onto Y)?

Equivalently, does there exist Y infinite dimensional and with infinite dimensional orthogonal complement $Y\perp$ such that for the decomposition $\mathcal{H} = Y \oplus Y\perp$ we have $T = \begin{bmatrix} * & * \\ F & * \end{bmatrix}$ with F finite rank?
Theorem (Brown, Pearcy, 1971)

Let $T \in B(\mathcal{H})$ and $\varepsilon > 0$. Then there exists a scalar λ and a decomposition of $\mathcal{H} = Y \oplus Y^\perp$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T = \begin{bmatrix} \lambda I + K & * \\ F & * \end{bmatrix}$ where K and F are compact and have norms at most ε. In particular, for any $T \in B(\mathcal{H})$ there exists Y infinite dimensional with infinite dimensional orthogonal complement such that Y is invariant under $T - F$, where $F := (I - P)TP$ is compact.
Theorem (Brown, Pearcy, 1971)

Let $T \in B(\mathcal{H})$ and $\varepsilon > 0$. Then there exists a scalar λ and a decomposition of $\mathcal{H} = Y \oplus Y^\perp$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T = \begin{bmatrix} \lambda I + K & * \\ F & * \end{bmatrix}$ where K and F are compact and have norms at most ε.

In particular, for any $T \in B(\mathcal{H})$ there exists Y infinite dimensional with infinite dimensional orthogonal complement such that Y is invariant under $T - F$, where $F := (I - P)TP$ is compact.
Related results

Theorem (Brown, Pearcy, 1971)

Let $T \in B(\mathcal{H})$ and $\varepsilon > 0$. Then there exists a scalar λ and a decomposition of $\mathcal{H} = Y \oplus Y^\perp$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T = \begin{bmatrix} \lambda I + K & * \\ F & * \end{bmatrix}$ where K and F are compact and have norms at most ε.

In particular, for any $T \in B(\mathcal{H})$ there exists Y infinite dimensional with infinite dimensional orthogonal complement such that Y is invariant under $T - F$, where $F := (I - P)TP$ is compact.

Theorem (Voiculescu, 1976)

Under the same hypotheses, T has the form $T = \begin{bmatrix} * & F_2 \\ F_1 & * \end{bmatrix}$ where F_1 and F_2 are compact with norms at most ε.
An equivalent formulation: almost-invariant half-spaces

An equivalent formulation of this problem was first introduced in a paper by Androulakis, Popov, T., Troitsky in 2009.
An equivalent formulation: almost-invariant half-spaces

An equivalent formulation of this problem was first introduced in a paper by Androulakis, Popov, T., Troitsky in 2009.

Definitions (Androulakis, Popov, T., Troitsky, 2009)

If X is a Banach space, $T \in B(X)$ and Y is a subspace of X, then Y is called **almost invariant** for T, or **T-almost invariant** if there exists a finite dimensional subspace M of X such that $T(Y) \subseteq Y + M$. A subspace Y of a Banach space X is called **half-space** if it is of both infinite dimension and infinite codimension in X. **Almost invariant half-space problem**

Does every bounded linear operator on a Banach space have almost invariant half-spaces?
An equivalent formulation of this problem was first introduced in a paper by Androulakis, Popov, T., Troitsky in 2009.

Definitions (Androulakis, Popov, T., Troitsky, 2009)

If X is a Banach space, $T \in \mathcal{B}(X)$ and Y is a subspace of X, then Y is called **almost invariant** for T, or **T-almost invariant** if there exists a finite dimensional subspace M of X such that $T(Y) \subseteq Y + M$.

A subspace Y of a Banach space X is called a **half-space** if it is of both infinite dimension and infinite codimension in X.
An equivalent formulation: almost-invariant half-spaces

An equivalent formulation of this problem was first introduced in a paper by Androulakis, Popov, T., Troitsky in 2009.

Definitions (Androulakis, Popov, T., Troitsky, 2009)

If X is a Banach space, $T \in B(X)$ and Y is a subspace of X, then Y is called **almost invariant** for T, or **T-almost invariant** if there exists a finite dimensional subspace M of X such that $T(Y) \subseteq Y + M$.

A subspace Y of a Banach space X is called a **half-space** if it is of both infinite dimension and infinite codimension in X.

Almost invariant half-space problem

Does every bounded linear operator on a Banach space have almost invariant half-spaces?
Almost invariant half-space problem

<table>
<thead>
<tr>
<th>Proposition (APTT, 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $T \in \mathcal{B}(X)$ and $Y \subseteq X$ be a half-space. Then Y is almost invariant under T if and only if Y is invariant under $T + F$ for some finite rank operator F.</td>
</tr>
</tbody>
</table>
Almost invariant half-space problem

Proposition (APTT, 2009)

Let $T \in \mathcal{B}(X)$ and $Y \subseteq X$ be a half-space. Then Y is almost invariant under T if and only if Y is invariant under $T + F$ for some finite rank operator F.

Proposition (APTT, 2009)

Let T be an operator on a Banach space X. If T has an almost invariant half-space then so does its adjoint T^*.
Theorem (APTT, 2009)

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:

1. T has no eigenvalues.
2. The unbounded component of the resolvent contains $\{0 < |z| < \varepsilon\}$ for some $\varepsilon > 0$.
3. There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with at most 1-dimensional "error".

Theorem was used to show existence of invariant half-spaces for weighted shifts on l^p.

Marcoux, Popov and Radjavi (2012) remarked that the first hypotheses condition is not needed.
Theorem (APTT, 2009)

Let X be a Banach space and $T \in B(X)$ satisfy the following:

1. T has no eigenvalues.

Then T has an almost invariant half-space with at most 1-dimensional "error". Theorem was used to show existence of invariant half-spaces for weighted shifts on l^p. Marcoux, Popov and Radjavi (2012) remarked that the first hypotheses condition is not needed.
Theorem (APTT, 2009)

Let \(X \) be a Banach space and \(T \in B(X) \) satisfy the following:

1. \(T \) has no eigenvalues.
2. The unbounded component of the resolvent contains \(\{ 0 < |z| < \varepsilon \} \) for some \(\varepsilon > 0 \).
Results

Theorem (APTT, 2009)

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:

1. T has no eigenvalues.
2. The unbounded component of the resolvent contains $\{0 < |z| < \varepsilon\}$ for some $\varepsilon > 0$.
3. There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with at most 1-dimensional "error". The theorem was used to show existence of invariant half-spaces for weighted shifts on l_p. Marcoux, Popov and Radjavi (2012) remarked that the first hypothesis condition is not needed.
Theorem (APTT, 2009)

Let X be a Banach space and $T \in B(X)$ satisfy the following:

1. T has no eigenvalues.
2. The unbounded component of the resolvent contains $\{0 < |z| < \varepsilon\}$ for some $\varepsilon > 0$.
3. There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with at most 1-dimensional "error".

Theorem was used to show existence of invariant half-spaces for weighted shifts on l^p.

Marcoux, Popov and Radjavi (2012) remarked that the first hypotheses condition is not needed.
Theorem (APTT, 2009)

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:

1. T has no eigenvalues.
2. The unbounded component of the resolvent contains $\{0 < |z| < \varepsilon\}$ for some $\varepsilon > 0$.
3. There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with at most 1-dimensional "error".

Theorem was used to show existence of invariant half-spaces for weighted shifts on l_p.

Marcoux, Popov and Radjavi (2012) remarked that the first hypotheses condition is not needed.
Theorem (APTT, 2009)

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:

1. T has no eigenvalues.
2. The unbounded component of the resolvent contains $\{0 < |z| < \varepsilon\}$ for some $\varepsilon > 0$.
3. There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with at most 1-dimensional "error".

Theorem was used to show existence of invariant half-spaces for weighted shifts on l_p.
Marcoux, Popov and Radjavi (2012) remarked that the fist hypotheses condition is not needed.
Theorem (APTT, 2009)

Let X be a Banach space and $T \in \mathcal{B}(X)$ satisfy the following:

1. T has no eigenvalues.
2. The unbounded component of the resolvent contains $\{0 < |z| < \varepsilon\}$ for some $\varepsilon > 0$.
3. There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with at most 1-dimensional “error”.

Theorem was used to show existence of invariant half-spaces for weighted shifts on l_p.
Marcoux, Popov and Radjavi (2012) remarked that the first hypotheses condition is not needed.
Results

<table>
<thead>
<tr>
<th>Theorem (Popov, T., 2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $T \in B(X)$ be such that $\partial \sigma(T) \setminus \sigma_p(T) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.</td>
</tr>
</tbody>
</table>
Theorem (Popov, T., 2013)
Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma(T) \setminus \sigma_p(T) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Corollary
Let X be reflexive and $T \in \mathcal{B}(X)$ be such that one of T or T^* has a boundary point of the spectrum which is not an eigenvalue. Then T admits an almost-invariant half-space with error at most one.
Theorem (Popov, T., 2013)

Let $T \in B(X)$ be such that $\partial \sigma(T) \setminus \sigma_p(T) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Corollary

Let X be reflexive and $T \in B(X)$ be such that one of T or T^* has a boundary point of the spectrum which is not an eigenvalue. Then T admits an almost-invariant half-space with error at most one.

Note that an operator $T \in B(X)$ which has no invariant subspaces cannot have any eigenvalues.
Results

Theorem (Popov, T., 2013)

Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma(T) \setminus \sigma_p(T) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Corollary

Let X be reflexive and $T \in \mathcal{B}(X)$ be such that one of T or T^* has a boundary point of the spectrum which is not an eigenvalue. Then T admits an almost-invariant half-space with error at most one.

Note that an operator $T \in \mathcal{B}(X)$ which has no invariant subspaces cannot have any eigenvalues. It follows from the previous theorem that such an operator has an almost-invariant half-space.
Theorem (Popov, T., 2013)
Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma(T) \setminus \sigma_p(T) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Corollary
Let X be reflexive and $T \in \mathcal{B}(X)$ be such that one of T or T^* has a boundary point of the spectrum which is not an eigenvalue. Then T admits an almost-invariant half-space with error at most one.

Note that an operator $T \in \mathcal{B}(X)$ which has no invariant subspaces cannot have any eigenvalues. It follows from the previous theorem that such an operator has an almost-invariant half-space. In particular, all known counterexamples to the invariant subspace problem (e.g. the operators constructed by Enflo or Read) are not counterexamples to the almost-invariant half-space problem.
Let X be reflexive and $T \in \mathcal{B}(X)$. Then T admits an almost-invariant half-space with error at most one.
Theorem (PT, 2013)

Let X be reflexive and $T \in \mathcal{B}(X)$. Then T admits an almost-invariant half-space with error at most one.

When $\partial \sigma(T) \setminus \sigma_p(T) \neq \emptyset$ or $\partial \sigma(T^*) \setminus \sigma_p(T^*) \neq \emptyset$: previous theorem
Results

Theorem (PT, 2013)

Let X be reflexive and $T \in \mathcal{B}(X)$. Then T admits an almost-invariant half-space with error at most one.

When $\partial \sigma(T) \setminus \sigma_p(T) \neq \emptyset$ or $\partial \sigma(T^*) \setminus \sigma_p(T^*) \neq \emptyset$: previous theorem

When $\partial \sigma(T) \setminus \sigma_p(T) = \emptyset$ and $\partial \sigma(T^*) \setminus \sigma_p(T^*) = \emptyset$: an important ingredient is the main theorem from APTT(2009).
For Hilbert spaces:

Corollary

For any $T \in \mathcal{B}(\mathcal{H})$ there exist an infinite dimensional subspace Y with infinite dimensional orthogonal complement such that $(I - P)TP$ has rank at most one, where P is the orthogonal projection onto Y.
For Hilbert spaces:

Corollary

For any $T \in \mathcal{B}(\mathcal{H})$ there exist an infinite dimensional subspace Y with infinite dimensional orthogonal complement such that $(I - P)TP$ has rank at most one, where P is the orthogonal projection onto Y.

Equivalently, relative to the decomposition $\mathcal{H} = Y \oplus Y^\perp$, T has the form $T = \begin{bmatrix} * & * \\ F & * \end{bmatrix}$ where F has rank one.
Results: Perturbations of small norm

Theorem (PT, 2013)

Let $T \in B(X)$ such that there exists $\lambda \in \partial \sigma(T)$ which is not an eigenvalue. Then for any $\varepsilon > 0$, T has an almost invariant half-space Y_ε such that $(T - \lambda I)|_{Y_\varepsilon}$ is compact and $\|(T - \lambda I)|_{Y_\varepsilon}\| < \varepsilon$
Theorem (PT, 2013)

Let $T \in \mathcal{B}(X)$ such that there exists $\lambda \in \partial \sigma(T)$ which is not an eigenvalue. Then for any $\varepsilon > 0$, T has an almost invariant half-space Y_ε such that $(T - \lambda I)|_{Y_\varepsilon}$ is compact and $\|(T - \lambda I)|_{Y_\varepsilon}\| < \varepsilon$

Corollary

Let $T \in \mathcal{B}(\mathcal{H})$ such that there exists $\lambda \in \partial \sigma(T)$ which is not an eigenvalue. Then for any $\varepsilon > 0$, there exists a decomposition of $\mathcal{H} = Y \oplus Y_\perp$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form

$T = \begin{bmatrix} \lambda I + K & * \\ F & * \end{bmatrix}$

where K is compact, F has rank one, and both have norms at most ε.
Theorem (Brown, Pearcy, 1971)

Let $T \in B(H)$ and $\varepsilon > 0$. Then there exists a scalar λ and a decomposition of $H = Y \oplus Y^\perp$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form

$$T = \begin{bmatrix} \lambda I + K & * \\ F & * \end{bmatrix}$$

where K and F are compact and have norms at most ε.

Corollary

Let $T \in B(H)$ such that there exists $\lambda \in \partial \sigma(T)$ which is not an eigenvalue. Then for any $\varepsilon > 0$, there exists a decomposition of $H = Y \oplus Y^\perp$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form

$$T = \begin{bmatrix} \lambda I + K & * \\ F & * \end{bmatrix}$$

where K is compact, F has rank one, and both have norms at most ε.
Theorem (T, Wallis, 2017)

Let X be a reflexive Banach space. Then there exists $d \in \mathbb{N}$ such that for every $\varepsilon > 0$ there is an operator $F \in \mathcal{B}(X)$ of rank $\leq d$ satisfying $\|F\| < \varepsilon$, and such that $T + F$ admits an IHS.
Theorem (T, Wallis, 2017)

Let X be a reflexive Banach space. Then there exists $d \in \mathbb{N}$ such that for every $\varepsilon > 0$ there is an operator $F \in \mathcal{B}(X)$ of rank $\leq d$ satisfying $\|F\| < \varepsilon$, and such that $T + F$ admits an IHS.

- if $\partial \sigma(T) \setminus \sigma_p(T) \neq \emptyset$ we can take $d = 1$ (no reflexivity needed)
Results: Perturbations of small norm

Theorem (T, Wallis, 2017)

Let X be a reflexive Banach space. Then there exists $d \in \mathbb{N}$ such that for every $\varepsilon > 0$ there is an operator $F \in \mathcal{B}(X)$ of rank $\leq d$ satisfying $\|F\| < \varepsilon$, and such that $T + F$ admits an IHS.

- if $\partial \sigma(T) \setminus \sigma_p(T) \neq \emptyset$ we can take $d = 1$ (no reflexivity needed)
The non-reflexive case

For general Banach spaces:
The non-reflexive case

For general Banach spaces:

- Popov, T. (2013): for dual operators
The non-reflexive case

For general Banach spaces:

- Popov, T. (2013): for dual operators
- Sirotkin, Wallis (2014): for quasinilpotent operators
The non-reflexive case

For general Banach spaces:
- Popov, T. (2013): for dual operators
- Sirotkin, Wallis (2014): for quasinilpotent operators
- Sirotkin, Wallis (2016): for strictly singular operators
The non-reflexive case

For general Banach spaces:

- Popov, T. (2013): for dual operators
- Sirotkin, Wallis (2014): for quasinilpotent operators
- Sirotkin, Wallis (2016): for strictly singular operators
- Sirotkin, Wallis (2016): every bounded operator has a compact perturbation that admits an invariant half-space
The non-reflexive case

For general Banach spaces:

- Popov, T. (2013): for dual operators
- Sirotkin, Wallis (2014): for quasinilpotent operators
- Sirotkin, Wallis (2016): for strictly singular operators
- Sirotkin, Wallis (2016): every bounded operator has a compact perturbation that admits an invariant half-space
The non-reflexive case

Theorem (T, preprint, 2017)

Let $T \in B(X)$ be such that $\partial \sigma(T^*) \setminus \sigma_p(T^*) \neq \emptyset$.

Then T admits an almost-invariant half-space with error at most one.

If X is a Banach space, any $T \in B(X)$ admits an almost-invariant half-space with error at most one.
The non-reflexive case

Theorem (T, preprint, 2017)
Let $T \in B(X)$ be such that $\partial \sigma(T^*) \setminus \sigma_p(T^*) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.
The non-reflexive case

Theorem (T, preprint, 2017)

Let $T \in \mathcal{B}(X)$ be such that $\partial \sigma(T^*) \setminus \sigma_p(T^*) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Theorem (T, preprint, 2017)

If X is a Banach space, any $T \in \mathcal{B}(X)$ admits an almost-invariant half-space with error at most one.
The non-reflexive case

Theorem (T, preprint, 2017)

Let $T \in B(X)$ be such that $\partial \sigma(T^*) \setminus \sigma_p(T^*) \neq \emptyset$. Then T admits an almost-invariant half-space with error at most one.

Theorem (T, preprint, 2017)

If X is a Banach space, any $T \in B(X)$ admits an almost-invariant half-space with error at most one.
The non-reflexive case

Theorem (T, preprint, 2017)

Let X be a Banach space and $T \in \mathcal{B}(X)$ a bounded operator such that $\partial \sigma(T^*) \setminus \sigma_p(T^*) \neq \emptyset$. Then for any $\varepsilon > 0$ there exists a rank one operator F with $\|F\| < \varepsilon$ such that $T + F$ has an invariant half-space.
The non-reflexive case

Theorem (T, preprint, 2017)

Let X be a Banach space and $T \in B(X)$ a bounded operator such that $\partial \sigma(T^*) \setminus \sigma_p(T^*) \neq \emptyset$. Then for any $\varepsilon > 0$ there exists a rank one operator F with $\|F\| < \varepsilon$ such that $T + F$ has an invariant half-space.

Theorem (T, preprint, 2017)

Let X be a Banach space and $T \in B(X)$ a bounded operator. Then for any $\varepsilon > 0$ there exists a finite rank operator F with $\|F\| < \varepsilon$ such that $T + F$ has an invariant half-space. Moreover, if $\partial \sigma(T) \setminus \sigma_p(T) \neq \emptyset$ or $\partial \sigma(T^*) \setminus \sigma_p(T^*) \neq \emptyset$, F can be taken to be rank one.
Some open problems

Theorem (Voiculescu, 1976)

\[T \in B(H) \text{ has the form } T = \begin{bmatrix} * & F_2 \\ F_1 & * \end{bmatrix} \]

where \(F_1 \) and \(F_2 \) are compact with norms at most \(\varepsilon \).

In other words, there exist \(K \) compact such that \(T - K \) has a reducing half-space.

Question: Can we take \(K \) finite rank?
Some open problems

Theorem (Voiculescu, 1976)

$T \in B(H)$ has the form $T = \begin{bmatrix} * & F_2 \\ F_1 & * \end{bmatrix}$ where F_1 and F_2 are compact with norms at most ε.

In other words, there exist K compact such that $T - K$ has a reducing half-space.

Question: Can we take K finite rank?
Some open problems

Theorem (Voiculescu, 1976)

\[T \in B(H) \text{ has the form } T = \begin{bmatrix} \ast & F_2 \\ F_1 & \ast \end{bmatrix} \text{ where } F_1 \text{ and } F_2 \text{ are compact with norms at most } \varepsilon. \]

In other words, there exist \(K \) compact such that \(T - K \) has a reducing half-space.

Question: Can we take \(K \) finite rank?
Some open problems

Theorem (Brown, Pearcy, 1971)

Let $T \in B(\mathcal{H})$ and $\varepsilon > 0$. Then there exists a scalar λ and a decomposition of $\mathcal{H} = Y \oplus Y^\perp$ into infinite dimensional subspaces such that the corresponding matrix representation of T has the form $T = \begin{bmatrix} \lambda I + K & * \\ F & * \end{bmatrix}$ where K and F are compact and have norms at most ε.

Theorem (Popov, T, 2013)

If $\lambda \in \partial \sigma(T) \setminus \sigma_p(T)$, then for any $\varepsilon > 0$, T has the form $T = \begin{bmatrix} \lambda I + K & * \\ F & * \end{bmatrix}$ where K is compact, F has rank one, and both have norms at most ε.

Question: Can we also get F rank one when $\partial \sigma(T) \setminus \sigma_p(T) = \emptyset$?
Some open problems

Theorem (Brown, Pearcy, 1971)
Let \(T \in \mathcal{B}(\mathcal{H}) \) and \(\varepsilon > 0 \). Then there exists a scalar \(\lambda \) and a decomposition of \(\mathcal{H} = Y \oplus Y^\perp \) into infinite dimensional subspaces such that the corresponding matrix representation of \(T \) has the form
\[
T = \begin{bmatrix}
\lambda I + K & * \\
F & *
\end{bmatrix}
\]
where \(K \) and \(F \) are compact and have norms at most \(\varepsilon \).

Theorem (Popov, T, 2013)
If \(\lambda \in \partial \sigma(T) \setminus \sigma_p(T) \), then for any \(\varepsilon > 0 \), \(T \) has the form
\[
T = \begin{bmatrix}
\lambda I + K & * \\
F & *
\end{bmatrix}
\]
where \(K \) is compact, \(F \) has rank one, and both have norms at most \(\varepsilon \).

Question: Can we also get \(F \) rank one when \(\partial \sigma(T) \setminus \sigma_p(T) = \emptyset \)?
For a nonzero vector $e \in X$ and for $\lambda \in \mathbb{C}\backslash \sigma(T)$ define a vector h_λ in X by

$$h_\lambda := (\lambda I - T)^{-1}(e).$$
The Method (sketch)

For a nonzero vector $e \in X$ and for $\lambda \in \mathbb{C} \setminus \sigma(T)$ define a vector h_λ in X by

$$h_\lambda := (\lambda I - T)^{-1}(e).$$

Observe that $(\lambda I - T)h_\lambda = e$, hence

$$Th_\lambda = \lambda h_\lambda - e$$
The Method (sketch)

For a nonzero vector $e \in X$ and for $\lambda \in \mathbb{C} \setminus \sigma(T)$ define a vector h_λ in X by

$$h_\lambda := (\lambda I - T)^{-1}(e).$$

Observe that $(\lambda I - T)h_\lambda = e$, hence

$$Th_\lambda = \lambda h_\lambda - e$$

Hence, for a subset $A \subset \mathbb{C} \setminus \sigma(T)$, the closed subspace Y of X defined by

$$Y = \overline{\text{span}\{h_\lambda : \lambda \in A\}}$$

is a T-almost invariant subspace (which is not necessarily a half-space).
The Method (sketch)

If \((x_n)_n\) is a \textit{basic sequence} then \(\overline{\text{span}}\{x_{2n}\}_n\) is a half subspace of \(\overline{\text{span}}\{x_n\}_n\).
The Method (sketch)

If \((x_n)_n\) is a basic sequence then \(\overline{\text{span}}\{x_{2n}\}_n\) is a half subspace of \(\overline{\text{span}}\{x_n\}_n\).

We try to find \(e \in X\) and a sequence \((\lambda_n)_n\) in the resolvent such that \((h_{\lambda_n})_n\) is basic sequence.
The Method (sketch)

If \((x_n)_n\) is a basic sequence then \(\text{span}\{x_{2n}\}_n\) is a half subspace of \(\text{span}\{x_n\}_n\).

We try to find \(e \in X\) and a sequence \((\lambda_n)_n\) in the resolvent such that \((h_{\lambda_n})_n\) is basic sequence.

Old criterion for extracting basic sequences:
If \((x_n)_n\) is a basic sequence then \(\text{span}\{x_{2n}\}_n\) is a half subspace of \(\text{span}\{x_n\}_n\).

We try to find \(e \in X\) and a sequence \((\lambda_n)_n\) in the resolvent such that \((h_{\lambda_n})_n\) is basic sequence.

Old criterion for extracting basic sequences:

Theorem (Kadets, Pełczyński, 1965)

Let \(S\) be a bounded subset of a Banach space \(X\) such that \(0 \not\in \overline{S}_{\|\cdot\|}\). Then the following are equivalent:
The Method (sketch)

If \((x_n)_n\) is a \textit{basic sequence} then \(\overline{\text{span}}\{x_{2n}\}_n\) is a half subspace of \(\overline{\text{span}}\{x_n\}_n\).

We try to find \(e \in X\) and a sequence \((\lambda_n)_n\) in the resolvent such that \((h_{\lambda_n})_n\) is basic sequence.

Old criterion for extracting basic sequences:

Theorem (Kadets, Pełczyński, 1965)

Let \(S\) be a bounded subset of a Banach space \(X\) such that \(0 \notin \overline{S^{||\cdot||}}\). Then the following are equivalent:

1. \(S\) fails to contain a basic sequence.
If \((x_n)_n\) is a basic sequence then \(\overline{\text{span}}\{x_{2n}\}_n\) is a half subspace of \(\overline{\text{span}}\{x_n\}_n\).

We try to find \(e \in X\) and a sequence \((\lambda_n)_n\) in the resolvent such that \((h_{\lambda_n})_n\) is basic sequence.

Old criterion for extracting basic sequences:

Theorem (Kadets, Pełczyński, 1965)

Let \(S\) be a bounded subset of a Banach space \(X\) such that \(0 \notin \overline{S}\). Then the following are equivalent:

1. \(S\) fails to contain a basic sequence.
2. \(\overline{S}^{\text{weak}}\) is weakly compact and \(0 \notin \overline{S}^{\text{weak}}\).
For the non-reflexive case an important ingredient is the following theorem.

Theorem (Johnson, Rosenthal, 1972)

If \((x_n^*)\) is a semi-normalized, \(w^*\)-null, sequence in a dual Banach space \(X^*\), then there exists a a basic subsequence \((y_n^*)\) of \((x_n^*)\), and a bounded sequence \((y_n)\) in \(X\) such that \(y_i^*(y_j) = \delta_{ij}\) for all \(1 \leq i, j < \infty\).
Thank you!