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K compact Hausdor¤ space (or locally compact H. sp.)

C(K) real-valued continuous functions (or C0(K) real-
valued cont. fns.that are 0 at 1 )

� Borel �-algebra of K

B(�) bounded real-valued Borel measurable functions on
K

X Banach sp., L(X) bounded operators on X

E Banach lattice, Lr(E) regular operators on E



m : A! L(X) bounded algebra homomorphism,

where A ( C(K) or C0(K) )

De�nition 1 A map � : �! L(X) is a spectral mea-
sure if it is a Boolean algebra homomorphism. Then �
is countably additive if it is countably additive in the
strong operator topology on L(X)

That is for u; v 2 �; one has �(�u�v) = �(�u)�(�v)

and �(�u[v) = �(�u) + �(�v)� �(�u�v)

where �u is the characteristic function of u 2 �:



Problem 2 Given m : A ! L(X), what are the nec-
essary and su¢ cient conditions such that there exists
� : B(�) ! L(X) (bounded algebra homomorphism)
with (i) �jA = m and (ii) �j� is countably additive?

Problem 3 Consider the same problem when L(X) is
replaced by Lr(E) with the further requirement that m
and � should be positive.

Problem 4 Which Banach lattices E have a¢ rmative
answer to Problem 3 for every positive (bounded algebra
homomorphism) m : A! Lr(E)?



Given m : A! L(X) , de�ne a bilinear map

A�X ! X : (a; x) m(a)(x) = ax

Consider its (First-)Arens extension (a 2 A; x 2 X;x0 2
X 0; x00 2 X 00; a00 2 A00)

(1) x0 � a(x) = x0(ax); with x0 � a 2 X 0

(2)  x00;x0(a) = x00(x0 � a), with  x00;x0 2 A0

(3) a00 � x00(x0) = a00( x00;x0), with a
00 � x00 2 X 00



De�ne cm : A00 ! L(X 00) : cm(a00)(x00) = a00 � x00

then cm is a (w*,w*-operator)-continuous bounded alge-
bra homomorphism and cm(a) = m00(a)

Lemma 5 TFAE:
1. cm(A00)(X) � X;

2. For each x 2 X, the map A! X de�ned by a! ax

is weakly compact,
3. m has a unique extension to a bounded algebra ho-
momorphism cmX : A00 ! L(X) that is (w*,weak-
operator)-cont.
( cmX(a

00) = cm(a00)jX ).

We refer to the property in condition (2) above as A has
weakly compact action on X:



Theorem 6 Let m : A ! L(X) be a bounded algebra
homomorphism. Then there exists a countably additive
spectral measure � : B(�) ! L(X) that extends m if
and only if m induces weakly compact action of A in X:
In such a case � = cmjB(�).
Corollary 7 Let m : A! Lr(E) be a positive bounded
algebra homomorphism. Then cm is also positive. Furter-
more there exists a positive countably additive spectral
measure � : B(�)! Lr(E) that extends m if and only
if m induces weakly compact action of A in E: In such
a case � = cmjB(�).



Now we consider Problem 4. However the answer splits
into two parts. To state the results we need to recall a
de�nition.

De�nition 8 (Wickstead) The center Z(E) of a Banach
lattice is topologically full if for each positive x 2 E,
the norm closure of Z(E)x is an order ideal in E.

Theorem 9 Suppose E has a topologically full center.
Then every positive bounded algebra homomorphismm :

C(K)! Lr(E) extends to a positive countably additive
spectral measure if and only if E has order continuous
norm.



But when we bring in homomorphisms on C0(K) as well
the answer changes.

Theorem 10 Suppose E has a topologically full center.
Then every positive bounded algebra homomorphismm :

A ! Lr(E) extends to a positive countably additive
spectral measure if and only if E is a KB-space.
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