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Main question

Question

Suppose A is a “large” subset of a Banach lattice X. Does AU {0}
contain large (closed) sublatices?

Convention: All spaces, lattices etc. are infinite dimensional,
unless specified otherwise.

“Large” may mean that a sublattice is:

m Infinite dimensional.
m Dense in AU {0}.
m Has “many” generators, in the lattice sense (not in the

topological sense). If S is a minimal set of generators of Z, S’
is another set of generators, and S is infinite, then |S| < |5'].
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m Dense lineable if AU {0} contains a linear subspace dense in
AU {0}.
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Some history: Banach space case

N. Kalton and A. Wilansky 1975: if A is a closed subspace of X,
with dim X /A = oo, then X\A is spaceable (that is, X\AU {0}
contains a closed infinite dimensional subspace).

L. Drewnowski 1984 (generalized by D. Kitson and R. Timoney

2011): if Ais a non-closed operator range in X, then X\A is

spaceable.

Let NDJ0, 1] be the space of nowhere differentiable functions in
Clo,1].

(i) V. Fonf, V. Gurarii, and M. Kadets 1966-1999: NDI0, 1] is
spaceable.

(i) L. Bernal-Gonzalez 2008: NDJ0, 1] is densely lineable (contains
a dense subspace).
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Banach lattices

Definition (Latticeability)

Suppose X is a Banach lattice. A subset A C X is (completely)
latticeable if X contains a (closed) infinite dimensional sublattice
Z so that Z ¢ AU {0}.

Latticeability ~ lineability
Complete latticeability ~ spaceability
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Complements of closed subspaces

Suppose Y is a closed subspace of a Banach lattice X. What kind
of sublattices does (X\Y) U {0} contain?

Theorem

(a) If Y is a closed subspace of a Banach lattice X with

dim X/Y > n € N, then 3 an n-dimensional sublattice Z C X so
that ZN'Y = {0}.

(b) Consequently, if Y is a closed subspace of a Banach lattice X
with dim X /Y = oo, then VYn € N 3 an n-dimensional sublattice
ZC Xst ZnY ={0}.

Question

In (b), can Z be infinite dimensional?
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Complements of closed ideals

An subspace Y of a Banach lattice X is called an ideal if, for any
y € Y, and any x € X satisfying |x| < |y|, we have x € Y.

Suppose Y is a closed ideal in X, with dim X/Y = co. Then X;
contains disjoint non-zero elements (x;)jen so that Y N Z = {0},
where Z = spani[(x;)ien]. In particular, X\'Y is completely
latticeable.
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Complements of closed subspaces

Theorem

Suppose Y is a fin. dim. subspace of a Banach lattice X. Then X,
contains disjoint non-zero elements (x;)ien so that Y N Z = {0},
where Z is the closed ideal generated (x;)ien:

Z={z€ X :|z| <|x| for some x € span(x;)ien] }

The result of this theorem is sharp.

Proposition

CI[0, 1] contains a closed inf. codim. subspace Y so that
(C[0,1]\Y) U {0} contains no non-trivial ideals.
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Theorem

Suppose X is an infinite dimensional order continuous Banach
lattices, and Y C X is a closed infinite codimensional subspace.
Then X\Y is completely latticeable.

Definition

X is order continuous if, for any net x, \ 0, we have
limg [|Xo|| = 0. Examples: L, (1 < p < 00), g, but not C[0,1].

Theorem

Suppose K is a compact subset of R", Ko C K,
X ={xe€ C(K) : x|k, =0}. If Y C X is a closed infinite
codimensional subspace, then X\'Y is completely latticeable.
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Complements of closed subspaces in atomic lattices

Suppose X is a sequence space — that is, the order structure is
determined by a 1-unconditional basis (0;);en.

Suppose Y is a closed subspace of X, with dim X /Y = co. Then
there exist ki < ko < ... so that

Y Nspan|(o,)ien] = {0}.

In particular, X\'Y is completely latticeable.
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Proposition

Suppose X is either £, (1 < p < o0) or ¢y, and Y is a closed
subspace of X, with dim X/Y = co. Then X\Y is completely
latticeable. Moreover, there exists a closed sublattice Z C X and a
constant c so that ||z + y|| > cl||z|| foranyz € Z andy € Y.



Complements of closed subspaces in ¢,, cg

Proposition

Suppose X is either £, (1 < p < o0) or ¢y, and Y is a closed
subspace of X, with dim X/Y = co. Then X\Y is completely
latticeable. Moreover, there exists a closed sublattice Z C X and a
constant c so that ||z + y|| > cl||z|| foranyz € Z andy € Y.

RENEILS

Proposition fails for X = /5.
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Complements of compact sets

L. Drewnowski 1984 (generalized by D. Kitson and R. Timoney
2011): if Ais a non-closed operator range in X, then X\A is
spaceable.

Theorem

Suppose A is a relatively compact set in an infinite dimensional
Banach lattice X. Then X\RA is completely latticeable.

Corollary

If X is an infinite dimensional Banach lattice, and Y C X is the
range of a compact operator, then X\'Y is completely latticeable.



Complements of dense subspaces

For 0 < p < oo, there exists a vector lattice

Z C lp\(Ugeplq) U{0} (or Z C cp\(Ug<oolq) U {0} if p=00) so
that:

Z =4y (co if p=00).
If a set S generates Z as a vector lattice, then |S| > 2%,
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latticeable.



Proof: complements of inf. codim. subspaces

Theorem (to be proved)

Suppose X is an infinite dimensional order continuous Banach
lattice, and Y C X is a closed infinite codimensional subspace.
Then X\Y is completely latticeable.

Lemma (Technical lemma, see Singer, Bases II)

Suppose Y is a closed subspace of a Banach lattice X, and 3
mutually disjoint x1,x2,... € Xy \{0} s.t.

Y Nspan[xy, xp,...] = {0}. Then 3 4 < ip < ... with
Y Nspan[x, X, . ..] = {0}. Consequently, X\'Y is completely
latticeable.

Strategy for proving Theorem: find mutually disjoint
X1, Xx2,... € X;:\{0} s.t. Y Nspan[xi,x,...] ={0}.
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Theorem (to be proved)

Suppose X is an infinite dimensional order continuous Banach
lattice, and Y C X is a closed infinite codimensional subspace.
Then X\Y is completely latticeable.

It suffices to consider the situation when X has a weak order unit.
Then X is a Kdthe function space on (2, X, i), where p is a
o-finite measure on the measure space (2, X).

For simplicity, we assume that w is an atomless probability measure.
Notation. For Z C X, and S € ¥, set Zs = {z € Z : z|se = 0}.

Lemma

For X,Y,S as above, either dim Xs/Ys = oo, or
dimXSC/YSC = 0.
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Lemma

VneN3ISeXst dimXs/Ys > n, and dim Xsc/Yse = 0.

Sketch of proof. Find a family of sets U; € & (t € [0,1]) s.t.

m Up=0, Ui =9, and pu(U;) = t for any t.
mIf t <s, then Uy C Us.

Set ¢(t) = dim Xy,/Yu,. ¢ is increasing, left continuous. Thus,
Ja €]0,1) s.t. {t €]0,1]:dim Xy,/ Yy, = n} = (o, 1].

Similarly, 38 € (0,1] s.t. {t € [0,1] : dim Xye/Yye = n} = [0, 3).
We have max{dim Xy, /Yy,,dim Xye/Yye} = oo, hence

[0,8) U (a, 1] =[0,1]. Pick t € (5, ), and take either S = Uy, or
S - UtC.
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lattice, and Y C X is a closed infinite codimensional subspace.
Then X\Y is completely latticeable.

Sketch of proof. Assume X is a Kothe function space on
(Q, %, ), where p is an atomless probability measure. Need to
find mutually disjoint x, x2, ... € X;\{0} s.t.

Y Nspan[xq, x,...] = {0}.

Recursively find x1, x2, ... € X;:\{0}, and mutually disjoint
51,5,... C Q so that:

m Vi, x; is supported on S;.
m Vn, dim Xs/Ys = oo, where S = (S1 U... U Sp)°.
m Vn, x1,...,X, are linearly independent modulo_ Y.
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Need to find mutually disjoint x1, x2, ... € X \{0} s.t.
Y Nspan[xi, %o, ...] = {0}.

Recursively find xi, x2, ... € X;\{0}, and mutually disjoint

51,5,... C Q so that:

m Vi, x; is supported on S;.
m Vn, dim Xs/Ys = oo, where S = (S1 U...US,)°.

m Vn, xq,...,X, are linearly independent modulo Y.

Once x1,...,Xn, S1,...,S, are selected: find

Sny1C S = (51 U... US,,)C S.t. dimXS"+1/Y5n+1 >n+1,

dimXS\S,,H/YS\S,,H = OQ.



Proof: complements of inf. codim. subspaces

Need to find mutually disjoint x1, x2, ... € X \{0} s.t.
Y Nspan[xi, %o, ...] = {0}.

Recursively find xi, x2, ... € X;\{0}, and mutually disjoint

51,5,... C Q so that:

m Vi, x; is supported on S;.

m Vn, dim Xs/Ys = oo, where S = (S1 U...US,)°.

m Vn, xq,...,X, are linearly independent modulo Y.
Once x1,...,Xn, S1,...,S, are selected: find
Sny1C S = (51 U...U Sn)c s.t. dim Xf,'"Jrl/YSn+1
dim Xs\s, .,/ Ys\s,,, = 0.
Pick a “right” xp11, supported on S;1.

=>n+1,
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Proof: complements of n-codimensional subspaces

Theorem (to be proved)

If Y is a closed subspace of a Banach lattice X with
dim X/Y > n € N, then there exists an n-dimensional sublattice
Z C X sothat ZNnY = {0}.

Definition

A Banach lattice X is Dedekind (or order) complete if any subset
of X, which has an upper bound, has a supremum.
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Z C X sothat ZNnY = {0}.
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A Banach lattice X is Dedekind (or order) complete if any subset
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Examples of Dedekind complete lattices:
L, (1 < p < 00), dual Banach lattices.
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Theorem (to be proved)

If Y is a closed subspace of a Banach lattice X with
dim X/Y > n € N, then there exists an n-dimensional sublattice
Z C X sothat ZNnY = {0}.

Definition

A Banach lattice X is Dedekind (or order) complete if any subset
of X, which has an upper bound, has a supremum.

Examples of Dedekind complete lattices:
L, (1 < p < 00), dual Banach lattices.
C[0,1] is not Dedekind complete.
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If Y is a closed subspace of a Banach lattice X with
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If Y is a closed subspace of a Banach lattice X with
dim X/Y > n € N, then there exists an n-dimensional sublattice
Z C X sothat ZNY = {0}.

Proof when X is Dedekind complete.

(1) If G is a subspace of a fin. dim. Banach lattice F, then 3 a
sublattice Z C F,s.t. ZN G = {0}, dimZ +dim G = dim F.



Proof: complements of n-codimensional subspaces

Theorem (to be proved)

If Y is a closed subspace of a Banach lattice X with
dim X/Y > n € N, then there exists an n-dimensional sublattice
Z C X sothat ZNY = {0}.

Proof when X is Dedekind complete.

(1) If G is a subspace of a fin. dim. Banach lattice F, then 3 a
sublattice Z C F,s.t. ZN G = {0}, dimZ +dim G = dim F.

Proof: identify F with R™ (m = dim F), use linear algebra.
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Theorem (to be proved)

If Y is a closed subspace of a Banach lattice X with
dim X/Y > n € N, then there exists an n-dimensional sublattice
Z C X sothat ZNY = {0}.

Proof when X is Dedekind complete.
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Theorem (to be proved)

If Y is a closed subspace of a Banach lattice X with
dim X/Y > n € N, then there exists an n-dimensional sublattice
Z C X sothat ZNY = {0}.

Proof when X is Dedekind complete.

(2) Fact: if E is a fin. dim. subspace of a Dedekind complete
Banach lattice X, and € > 0, then 3 a fin. dim. sublattice F C X
and an automorphism T : X — X st. TECF, ||| - T| <e.



Proof: complements of n-codimensional subspaces

Theorem (to be proved)

If Y is a closed subspace of a Banach lattice X with
dim X/Y > n € N, then there exists an n-dimensional sublattice
Z C X sothat ZNY = {0}.

Proof when X is Dedekind complete.

(2) Fact: if E is a fin. dim. subspace of a Dedekind complete
Banach lattice X, and € > 0, then 3 a fin. dim. sublattice F C X
and an automorphism T : X — X st. TECF, ||| - T| <e.

Find a subspace E C X s.t. dimE =n, ENY = {0}. Use (2) to
find a fin. dim. sublattice F C X and T € B(X) as above s.t.
TENY ={0}. Then dim F/G > n, where G = Y NF. Use (1) to
find a sublattice Z C F s.t. dimZ =n, ZN G = {0}. Then
ZNnY ={0}. ]
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Theorem (to be proved)

If Y is a closed subspace of a Banach lattice X with
dim X/Y > n € N, then there exists an n-dimensional sublattice
Z C X sothat ZNY = {0}.
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Theorem (to be proved)

If Y is a closed subspace of a Banach lattice X with
dim X/Y > n € N, then there exists an n-dimensional sublattice
Z C X sothat ZNY = {0}.

Proof for general X. X** is Dedekind complete, hence 3
n-dimensional sublattice W C X** s.t. W N Y+t = {0}.



Proof: complements of n-codimensional subspaces

Theorem (to be proved)

If Y is a closed subspace of a Banach lattice X with
dim X/Y > n € N, then there exists an n-dimensional sublattice
Z C X sothat ZNY = {0}.

Proof for general X. X** is Dedekind complete, hence 3
n-dimensional sublattice W C X** s.t. W N Y+t = {0}.

Find ¢ € (0,1/9) s.t. dist(w, Y*+) > 3c||w|| ¥V w € W. Find
Xf,.ooxy € B(YE) C X* st

max ‘(X,f",w>| > 2cljw| Vwe W.
1<i<N

Let V = {x** € X* : maxigi<n |<x,?*, W>‘ < C}.



Proof: complements of n-codimensional subspaces

Theorem (to be proved)

If Y is a closed subspace of a Banach lattice X with
dim X/Y > n € N, then there exists an n-dimensional sublattice
Z C X sothat ZNY = {0}.

Proof for general X. X** is Dedekind complete, hence 3
n-dimensional sublattice W C X** s.t. W N Y+t = {0}.

Find ¢ € (0,1/9) s.t. dist(w, Y*+) > 3c||w|| ¥V w € W. Find
Xf,.ooxy € B(YE) C X* st

max ‘(X,f",w>| > 2cljw| Vwe W.
1<i<N

Let V = {x** € X* : maxigi<n |<x,?*, W>‘ < C}.

Local reflexivity: 3 lattice homomorphism T : W — Z C X s.t.
ITILIT Y <1+e and (I -=T)B(W)CeV.=2ZNnY ={0}. m
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Thank you for your attention!



