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Question

X a Banach space
C' C X closed generating cone/wedge

Do there exist Lipschitz functions (-)* : X — C
sothat x = 27 — a2~ for all z € X7

‘Lipschitz’, meaning there exists o > 0 so that
la* —y*| < allz -yl (2,y € X)



Motivation

Completions of normed function spaces
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Banach lattices
...trivially

Finite dimensional ordered Banach spaces
...slightly harder

...in general?
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X a Banach space
C' C X closed generating cone/wedge

Do there exist Lipschitz functions (1)* : X — C
so that z = 2™ — 2~ for all z € X7



Question

X a Banach space
C' C X closed generating cone/wedge

. COppr - - .
Do there exist E/wnuézsfunctlons (VEF: X = C
sothat z =2 — 2~ for all z € X7?



Answer



Answer

X a Banach space
C' C X closed generating cone/wedge

YES!

. Conpi - - .
There exist %’?,tj.nuo"b"s functions (1)* : X — C
sothat x =27 —a~ forall z € X
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Surjective, hence open (Klee 1955; And6 1962)
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Answer
CeC—X, (a,b)—~a—10
Surjective, hence open (Klee 1955; And6 1962)

. and has a continous right inverse!
(de Jeu and M. 2014)

Bartle-Graves-like application of
Michael’s Selection Theorem to

Xsx—{(a,b)eCHC:x=a—>b}

Ernest A. Michael

(1925 —-2013)
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Xsx—{(a,b)eCHC:x=a—>b}
actually has some Lipschitz-like properties!

Lipschitz version of Michael's Selection Theorem?
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Lipschitz properties of
Q. SX — QC@C

o(x) :={(a,b) e CHC:xz=a—10b}



Lipschitz properties of
p: Sy — 200C¢
e(x) :={(a,b) e CHC:z=a—>b}

There exists a > 0, for every g € Sx and (ag, bg) € w(zg),
b1 Sy — 2060

p(x) := p(z) N ((ag, bo) + allr — zol| Bxex) 7# 0




Lipschitz properties of
o: Sy — 208C
e(x) :={(a,b) e CHC:z=a—>b}

There exists a > 0, for every g € Sx and (ag, bg) € w(zg),
b1 Sy — 2060

p(x) = p(z) N ((a0, bo) + allr — zo|| Bxex) 7# 0

There exists continuous functions (:)* : Sx — C
with x =27 — 2~

and [|zg —a*[| < allzo — 2| (z € Sx)

“pointwise Lipschitz at xg"















Theorem

X a Banach space
C' C X closed generating cone/wedge

. COnpi v - .
There exist ?_’Y,DQUOU;S functions (1)* : X — C
sothat z = 2+ — 2~ for all x € X,

and both (:)* : X — C are pointwise Lipschitz
on a dense set of X.



A Pointwise Lipschitz Selection Theorem
(M. 2016 preprint)

M a metric space, Y a Banach space.
©: M — 2¥ a “nice enough”
“Lipschitz-like” multifunction.

There exists a continuous function f: M — Y
that is pointwise Lipschitz on a dense set of M
that satisfies f(x) € p(x) (x € M)



A Pointwise Lipschitz Selection Theorem
(M. 2016 preprint)

M a metric space, Y a Banach space.
©: M — 2¥ a “nice enough”
“Lipschitz-like"” multifunction.

There exists a continuous function f: M — Y
that is pointwise Lipschitz on a dense set of M
that satisfies f(x) € p(x) (x € M)

. and we can do no better than a dense set.



Theorem (Durand-Cartagena, Jaramillo 2010)

M (bi-Lipschitz homeomorphic to) length-metric space,
Y a Banach space.

If f: M — Y is pointwise Lipschitz everywhere,
then it is Lipschitz.

Example by Lindenstrauss and Aharoni (1978).



Conjecture

There exists a Banach space X,
closed generating cone/wedge C' C X,

which cannot have Lipschitz functions
()F: X - Cwithz=2" -2~ forall z € X.



Conjecture

There exists a Banach space X,
closed generating cone/wedge C' C X,

which cannot have Lipschitz functions
()F: X - Cwithz=2" -2~ forall z € X.

Any ideas?
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