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Bochner spaces

Definition

Let X be a Banach space. Let p ∈ [1,∞), then the Bochner space
Lp(Rd ;X ) consists of all strongly measurable functions f : Rd → X
such that

‖f ‖Lp(Rd ;X ) :=
(∫

Rd

‖f (x)‖pX dx
) 1

p
<∞.

Example

If X is a Banach function space over measure space (S , µ), then
Lp(Rd ;X ) consists of f : Rd × S → C such that

f (x , ·) ∈ X , a.e. x ∈ Rd

x 7→ ‖f (x , ·)‖X ∈ Lp(Rd)
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Extension problem

Let p ∈ [1,∞) and X be a Banach space. For a T bounded linear
operator on Lp(Rd) we define T̃ = T ⊗ IX on Lp(Rd)⊗ X by

T̃ (f ⊗ e) = Tf ⊗ e

Main Question

When does T̃ define a bounded operator on Lp(Rd ;X )?

• If X = Lp or X is a Hilbert space.

• If T is positive.

• In general not even for p = 2.

Goal

Provide sufficient conditions on X and T .
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Fourier Multipliers
We let F denote the Fourier transform on Rd . For a function
m : Rd → C define the following operator

Tmf := F−1(mF(f ))

Examples

The Hilbert transform “ d
dx /|

d
dx |” for d = 1:

H := Tm with m(ξ) = −i sgn(ξ)

The Riesz transforms:

Rj := Tm with m(ξ) = −i
ξj
|ξ|

Classifying which m yield bounded operators on Lp is very delicate!

Theorem (M. Riesz ’28)

H is bounded on Lp(R) and Rj is bounded on Lp(Rd) for all p ∈ (1,∞).
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The UMD property

Is H̃ bounded on Lp(R;X )?

Definition (Burkholder, Bourgain ’83)

A Banach space X is said to have the UMD property if H̃ is bounded
on Lp(R;X ) for some (all) p ∈ (1,∞).

Equivalent to Unconditionality of Martingale Differences

Examples

The following spaces have the UMD property:

• Hilbert spaces.

• (non-commutative) Lp-spaces for p ∈ (1,∞).

• Reflexive Orlicz spaces.

• Duals UMD spaces.

• Interpolation spaces between UMD spaces.
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Muckenhoupt weights

Definition

w ∈ L1loc(Rd) is called a weight if w > 0. Let p ∈ (1,∞), then
Lp(Rd ,w) consist of all measurable functions f : Rd → C such that

‖f ‖Lp(Rd ,w) :=
(∫

Rd

|f (x)|pw(x) dx
) 1

p
<∞

We consider the classes of Muckenhoupt weights Ap for p ∈ (1,∞).
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‖f ‖Lp(Rd ,w) :=
(∫

Rd

|f (x)|pw(x) dx
) 1

p
<∞

We consider the classes of Muckenhoupt weights Ap for p ∈ (1,∞).

Theorem

Let w be a weight. The following are equivalent

• w ∈ Ap.

• The Hilbert transform is bounded on Lp(R,w) (for d = 1).

• The Riesz projections are bounded on Lp(Rd ,w).

• The Hardy-Littlewood maximal function is bounded on Lp(Rd ,w).
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Muckenhoupt weights

Definition

w ∈ L1loc(Rd) is called a weight if w > 0. Let p ∈ (1,∞), then
Lp(Rd ,w) consist of all measurable functions f : Rd → C such that

‖f ‖Lp(Rd ,w) :=
(∫

Rd

|f (x)|pw(x) dx
) 1

p
<∞

We consider the classes of Muckenhoupt weights Ap for p ∈ (1,∞).

Example

Let w(x) = |x |α for x ∈ Rd , then

w ∈ Ap ⇐⇒ −d < α < d(p − 1)
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Scalar-valued Extrapolation

Theorem (Rubio de Francia ’84)

Let T be a sublinear operator on Lp(Rd ,w).

T is bounded on Lp(Rd ,w) for some p ∈ (1,∞) and all w ∈ Ap.

⇒
T is bounded on Lp(Rd ,w) for all p ∈ (1,∞) and all w ∈ Ap.

“There are no Lp spaces, only weighted L2” - Cordoba ’88
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Scalar-valued Extrapolation

Theorem (Rubio de Francia ’84)

Let T be a sublinear operator on Lp(Rd ,w) and p0 ∈ (0,∞).

T is bounded on Lp(Rd ,w) for some p ∈ (p0,∞) and all w ∈ Ap/p0 .

⇒
T is bounded on Lp(Rd ,w) for all p ∈ (p0,∞) and all w ∈ Ap/p0 .

“There are no Lp spaces, only weighted L2” - Cordoba ’88
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p-Convexity

Definition

Let p ∈ [1,∞]. A Banach function space X is p-convex if

∥∥∥( n∑
k=1

|xk |p
)1/p∥∥∥

X
≤
( n∑
k=1

‖xk‖pX
)1/p

for all x1, · · · , xn ∈ X . It is p-concave if the reverse estimate holds.

• Every Banach function space is 1-convex and ∞-concave.

• If a Banach function space is p-convex and q-concave, then
• p ≤ q.
• X is p0-convex for all p0 ≤ p.
• X is q0-concave for all q0 ≥ q.

• Lp is p-convex and p-concave.
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Concavification

Definition

Let p ∈ (0,∞) and let X be a p-convex Banach function space. Define
the p-concavification X p of X by

X p =
{
|x |p sgn(x) : x ∈ X

}
=
{
x : |x |1/p ∈ X

}
with the norm ‖x‖X p = ‖|x |1/p‖pX

For example (Lp)r = Lp/r .
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Vector-valued extrapolation

Theorem (Rubio de Francia ’86)

Let T be a sublinear operator on Lp(R,w) and let X be a Banach
function space with the UMD property.

T is bounded on Lp(R,w) for all p ∈ (1,∞) and all w ∈ Ap

⇒
T̃ is bounded on Lp(R;X ) for all p ∈ (1,∞).
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and extended by density. For linear operators this coincides with tensor
extension T̃ = T ⊗ IX .
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Vector-valued extrapolation

Theorem (Amenta, L., Veraar ’17)

Let T be a sublinear operator on Lp(Rd ,w). Take p0 ∈ (0,∞) and let
X be a Banach function space such that X p0 has the UMD property.

T is bounded on Lp(Rd ,w) for all p ∈ (p0,∞) and all w ∈ Ap/p0 .

⇒
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Applications and conclusion

• Vector-valued Littlewood–Paley–Rubio de Francia inequalities.
(Rubio de Francia 85’), (Potapov, Sukochev, Xu ’12), (Król ’14)

• Operator-valued Fourier multiplier theorems.
(Hytönen, Potapov ’06), (Król ’14)

• Boundedness of the vector-valued variational Carleson operator.
(Oberlin, Seeger, Tao, Thiele, Wright ’12), (Di Plinio, Do, Uraltsev ’16)

Goal

Provide sufficient conditions on X and T such that T̃ is a bounded
operator on Lp(Rd ;X )

• X a Banach function space such that X p0 is a Banach function
space with the UMD property

• T a sublinear operator that is bounded on Lp(w) for all w ∈ Ap/p0 .
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Provide sufficient conditions on X and T such that T̃ is a bounded
operator on Lp(Rd ;X )

• X a Banach function space such that X p0 is a Banach function
space with the UMD property

• T a sublinear operator that is bounded on Lp(w) for all w ∈ Ap/p0 .
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Thank you for your attention!
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LPR for Banach function spaces
For an interval I ⊂ R we define

SI f = F−1(1IF(f ))
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Let p ∈ (2,∞) and let I be a collection of mutually disjoint intervals in
R, then for w ∈ Ap/2 and f ∈ Lp(w)∥∥∥(∑

I∈I
|SI f |2

)1/2∥∥∥
Lp(w)

.p,w ‖f ‖Lp(w)
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LPR for Banach function spaces
For an interval I ⊂ R we define

SI f = F−1(1IF(f ))

Theorem (Rubio de Francia ’85, Król ’14)

Let q ∈ [2,∞), p ∈ (q′,∞) and let I be a collection of mutually
disjoint intervals in R, then for w ∈ Ap/q′ and f ∈ Lp(w)∥∥∥(∑

I∈I
|SI f |q

)1/q∥∥∥
Lp(w)

.p,q,w ‖f ‖Lp(w)

Definition

Let X be a Banach function space and p ∈ (q′,∞). X has the LPRp,q

property if ∥∥∥(∑
I∈I
|SI f |q

)1/q∥∥∥
Lp(X )

.X ,p,q,w ‖f ‖Lp(X )
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LPR for Banach function spaces

Theorem (Potapov, Sukochev, Xu ’12)

Let X be a Banach function space such that X 2 is a Banach function
space with the UMD property. Then X has the LPRp,2 property for all
p ∈ (2,∞).

Corollary (Amenta, L., Veraar ’17)

Let q ∈ [2,∞) and let X be a Banach function space such that X q′ is a
Banach function space with the UMD property. Then X has the LPRp,q

property for all p ∈ (q′,∞). Moreover, the defining estimate holds for
all w ∈ Ap/q′ and f ∈ Lp(w ;X ).

As an application we obtain an operator-valued Fourier multiplier result,
which extends a result of (Hytönen, Potapov ’06).
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Scalar-valued limited range extrapolation

Theorem (Auscher, Martell ’07)

Let T be a sublinear operator on Lp(w) and 0 ≤ p− < p+ ≤ ∞.

T is bounded on Lp(w) for some p ∈ (p−, p+) and all w ∈ Ap/p− ∩RH(p+/p)′ .

⇒
T is bounded on Lp(w) for all p ∈ (p−, p+) and all w ∈ Ap/p− ∩ RH(p+/p)′ .
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Vector-valued limited range extrapolation

Theorem (L. ’17)

Let T be a sublinear operator on Lp(w). Take 0 ≤ p− < p+ ≤ ∞ and let X

be p−-convex, p+-concave Banach function space such that
(
(X p−)∗

)p+/p−
has the UMD property.

T is bounded on Lp(w) for all p ∈ (p−, p+) and all w ∈ Ap/p− ∩ RH(p+/p)′ .

⇒
T̃ is bounded on Lp(w ;X ) for all p ∈ (p−, p+) and all w ∈ Ap/p− ∩RH(p+/p)′ .

Let X = Lq, then
(
(X p−)∗

)p+/p− has the UMD property if and only if

p− < q < p+
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