Some loose ends on unbounded order convergence

Hui Li
Southwest Jiaotong University
Joint work with Zili Chen
University of Alberta, July 20, 2017
1 Motivation

2 Main results
1 Motivation

2 Main results
Unbounded order convergence

- In 1948, a type of order convergence was introduced by Nakano in semi-ordered linear spaces, in order to establish a version of Birkhoff’s Ergodic Theorem in the setting of partially ordered spaces: Analogue of a.e. convergence

- In 1977, Wickstead introduced it into Banach lattices and named it unbounded order convergence.

Definition

Let X be a vector lattice, a net (x_α) in X is said to unbounded order converge to $x \in X$, $x_\alpha \uoc x$, if $|x_\alpha - x| \wedge y \to 0$ for any $y \in X_+$.
Unbounded order convergence

- In 1948, a type of order convergence was introduced by Nakano in semi-ordered linear spaces, in order to establish a version of Birkhoff’s Ergodic Theorem in the setting of partially ordered spaces: Analogue of a.e. convergence

- In 1977, Wickstead introduced it into Banach lattices and named it unbounded order convergence.

Definition

Let X be a vector lattice, a net (x_α) in X is said to unbounded order converge to $x \in X$, $x_\alpha \xrightarrow{\text{uo}} x$, if $|x_\alpha - x| \wedge y \xrightarrow{0} 0$ for any $y \in X_+$.
Unbounded order convergence

- In 1948, a type of order convergence was introduced by Nakano in semi-ordered linear spaces, in order to establish a version of Birkhoff’s Ergodic Theorem in the setting of partially ordered spaces: Analogue of a.e. convergence
- In 1977, Wickstead introduced it into Banach lattices and named it unbounded order convergence.

Definition

Let X be a vector lattice, a net (x_α) in X is said to **unbounded order converge** to $x \in X$, $x_\alpha \xrightarrow{uo} x$, if $|x_\alpha - x| \wedge y \xrightarrow{o} 0$ for any $y \in X_+$.
Unbounded order convergence

In 1948, a type of order convergence was introduced by Nakano in semi-ordered linear spaces, in order to establish a version of Birkhoff’s Ergodic Theorem in the setting of partially ordered spaces: Analogue of a.e. convergence.

In 1977, Wickstead introduced it into Banach lattices and named it unbounded order convergence.

Definition

Let X be a vector lattice, a net (x_α) in X is said to **unbounded order converge** to $x \in X$, $x_\alpha \xrightarrow{\text{uo}} x$, if $|x_\alpha - x| \wedge y \xrightarrow{} 0$ for any $y \in X_+$.
Gao and Xanthos (2014) used it to study Doob’s Martingale Convergence Theorem in a general framework of vector and Banach lattices;

Theorem (Dobb)

Every norm bounded submartingale in $L_1(\mu)$ converges almost surely (to a limit in $L_1(\mu)$).

Let X be a vector lattice, a filtration (E_n) on X is a sequence positive projections on X such that $E_nE_m = E_mE_n = E_{m\wedge n}$ for all $m, n \geq 1$. Recall also that a sequence $(x_n) \subset X$ is called a martingale relative to (E_n) if $E_nx_m = x_n$ for all $m \geq n$.
Gao and Xanthos (2014) used it to study Doob’s Martingale Convergence Theorem in a general framework of vector and Banach lattices;

Theorem (Dobb)

Every norm bounded submartingale in $L_1(\mu)$ converges almost surely (to a limit in $L_1(\mu)$).

Let X be a vector lattice, a filtration (E_n) on X is a sequence positive projections on X such that $E_nE_m = E_mE_n = E_{m\wedge n}$ for all $m, n \geq 1$. Recall also that a sequence $(x_n) \subset X$ is called a martingale relative to (E_n) if $E_n x_m = x_n$ for all $m \geq n$.
Gao and Xanthos (2014) used it to study Doob’s Martingale Convergence Theorem in a general framework of vector and Banach lattices;

Theorem (Dobb)

Every norm bounded submartingale in $L_1(\mu)$ converges almost surely (to a limit in $L_1(\mu)$).

Let X be a vector lattice, a filtration (E_n) on X is a sequence positive projections on X such that $E_nE_m = E_mE_n = E_{m\wedge n}$ for all $m, n \geq 1$. Recall also that a sequence $(x_n) \subset X$ is called a martingale relative to (E_n) if $E_nx_m = x_n$ for all $m \geq n$.
Gao and Xanthos (2014) used it to study Doob’s Martingale Convergence Theorem in a general framework of vector and Banach lattices;

Theorem (Dobb)

Every norm bounded submartingale in $L_1(\mu)$ converges almost surely (to a limit in $L_1(\mu)$).

Let X be a vector lattice, a filtration (E_n) on X is a sequence positive projections on X such that $E_nE_m = E_mE_n = E_{m \wedge n}$ for all $m, n \geq 1$. Recall also that a sequence $(x_n) \subset X$ is called a martingale relative to (E_n) if $E_nx_m = x_n$ for all $m \geq n$.
Theorem (Gao and Xanthos, 2014)

Let X be a vector lattice with a weak unit and a strictly positive order continuous functional, then every martingale (z_n) in $L_1(\Omega, X)$ with respect to a classical filtration is almost surely uo-Cauchy in X.

Uo-Cauchy

A net $\{x_\alpha\}$ is said to be unbounded order Cauchy (or, Uo-Cauchy for short), if the net $(x_\alpha - x_{\alpha'})_{(\alpha, \alpha')}$ uo-converges to 0.
Theorem (Gao and Xanthos, 2014)

Let \(X\) be a vector lattice with a weak unit and a strictly positive order continuous functional, then every martingale \((z_n)\) in \(L_1(\Omega, X)\) with respect to a classical filtration is almost surely uo-Cauchy in \(X\).

Uo-Cauchy

A net \(\{x_\alpha\}\) is said to be unbounded order Cauchy (or, Uo-Cauchy for short), if the net \((x_\alpha - x_{\alpha'})_{(\alpha, \alpha')}\) uo-converges to 0.
Theorem (Gao and Xanthos, 2014)

Let X be an order continuous Banach lattice. Then every norm bounded uo-Cauchy net is uo-convergent $\iff X$ is KB, every norm bounded increasing net is convergent (in order and in norms).

Question 1

In vector lattice X, is a norm bounded increasing net uo-Cauchy?

Question 2

Can we find a limit for a uo-Cauchy net? Say, in the universal completion?
Theorem (Gao and Xanthos, 2014)

Let X be an order continuous Banach lattice. Then every norm bounded uo-Cauchy net is uo-convergent $\iff X$ is KB, every norm bounded increasing net is convergent (in order and in norms).

Question 1

In vector lattice X, is a norm bounded increasing net uo-Cauchy?

Question 2

Can we find a limit for a uo-Cauchy net? Say, in the universal completion?
Theorem (Gao and Xanthos, 2014)

Let X be an order continuous Banach lattice. Then every norm bounded uo-Cauchy net is uo-convergent $\iff X$ is KB, every norm bounded increasing net is convergent (in order and in norms).

Question 1

In vector lattice X, is a norm bounded increasing net uo-Cauchy?

Question 2

Can we find a limit for a uo-Cauchy net? Say, in the universal completion?
1 Motivation

2 Main results
Theorem 1

Let X be a vector lattice. Suppose that X_n^\sim separates points of X, then every norm bounded positive increasing net (x_α) is uo-Cauchy in X.

Step 1: WLOG, assume X is order complete.

- Let $\{\phi_\gamma\}$ be a maximal disjoint collection in $(X_n^\sim)_+$;
- For each γ, the null idea of ϕ_γ is $\mathcal{N}_\gamma = \{x \in X : \phi_\gamma(|x|) = 0\}$; the carrier is $C_\gamma = \mathcal{N}_\gamma^d$;
- $X \sim \oplus C_\gamma$; pass to C_γ by considering $(P_\gamma x_\alpha)_\alpha$.
Uo-Cauchy net

Theorem 1

Let X be a vector lattice. Suppose that X_n separates points of X, then every norm bounded positive increasing net (x_α) is uo-Cauchy in X.

Step 1: WLOG, assume X is order complete.

- Let $\{\phi_\gamma\}$ be a maximal disjoint collection in $(X_n)^+$;
- For each γ, the null idea of ϕ_γ is $N_\gamma = \{x \in X : \phi_\gamma(|x|) = 0\}$; the carrier is $C_\gamma = N_\gamma^d$;
- $X \sim \oplus C_\gamma$; pass to C_γ by considering $(P_\gamma x_\alpha)_\alpha$.
Theorem 1

Let X be a vector lattice. Suppose that X_n separates points of X, then every norm bounded positive increasing net (x_α) is uo-Cauchy in X.

Step 1: WLOG, assume X is order complete.

- Let \{\phi_\gamma\} be a maximal disjoint collection in $(X_n)_+$;
- For each γ, the null idea of ϕ_γ is $N_\gamma = \{x \in X : \phi_\gamma(|x|) = 0\}$; the carrier is $C_\gamma = N_\gamma^d$;
- $X \sim \oplus C_\gamma$; pass to C_γ by considering $(P_\gamma x_\alpha)_\alpha$.

Uo-Cauchy net
Motivation

Main results

Uo-Cauchy net

Theorem 1

Let X be a vector lattice. Suppose that X^n separates points of X, then every norm bounded positive increasing net (x_α) is uo-Cauchy in X.

Step 1: WLOG, assume X is order complete.

- Let $\{\phi_\gamma\}$ be a maximal disjoint collection in $(X^n)_+$;
- For each γ, the null idea of ϕ_γ is $N_\gamma = \{x \in X : \phi_\gamma(|x|) = 0\}$; the carrier is $C_\gamma = N_\gamma^d$;
- $X \sim \oplus C_\gamma$; pass to C_γ by considering $(P_\gamma x_\alpha)_\alpha$.
Uo-Cauchy net

Theorem 1

Let X be a vector lattice. Suppose that X_\sim separates points of X, then every norm bounded positive increasing net (x_α) is uo-Cauchy in X.

Step 1: WLOG, assume X is order complete.

- Let \(\{\phi_\gamma\} \) be a maximal disjoint collection in \((X_\sim)_+ \);
- For each γ, the null idea of ϕ_γ is $N_\gamma = \{x \in X : \phi_\gamma(|x|) = 0\}$; the carrier is $C_\gamma = N_\gamma^d$;
- $X \sim \bigoplus C_\gamma$; pass to C_γ by considering $(P_\gamma x_\alpha)_\alpha$.
The following lemma guarantees we can just need to prove each \((P_\gamma x_\alpha)_\alpha\) is \(uo\)-Cauchy in \(C_\gamma\): simply let \(D = \bigcup_\gamma C_\gamma\) and notice \(|x_\alpha - x_\alpha'| \wedge y = |P_\gamma x_\alpha - P_\gamma x_\alpha'| \wedge y\) for each \(y \in C_\gamma\).

Lemma

Let \(X\) be a vector lattice and \(D\) be a set in \(X_+\). TFAE:

1. The band generated by \(D\) is \(X\).
2. For any net \((x_\alpha)\) in \(X_+\), \(x_\alpha \wedge d \xrightarrow{0} 0\) for any \(d \in D\) implies \(x_\alpha \xrightarrow{uo} 0\).
On C_γ, ϕ_γ is a strictly positive order continuous functional. Then C_γ can be embedded in the $L_1(\mu)$ space—the norm completion of $(C_\gamma, \| \cdot \|_\gamma)$ in which $\| y \|_\gamma = \phi_\gamma(\| y \|)$ for each $y \in C_\gamma$.
On C_γ, ϕ_γ is a strictly positive order continuous functional. Then C_γ can be embedded in the $L_1(\mu)$ space—the norm completion of $(C_\gamma, \| \cdot \|_\gamma)$ in which $\|y\|_\gamma = \phi_\gamma(|y|)$ for each $y \in C_\gamma$.
corollary

Let X be a Banach function space over a σ-finite measure space. Then any norm bounded positive increasing sequence in X converges a.e. to a real-valued measurable function.

Theorem 2

Let X be a vector lattice such that X_\sim^n separates points of X. Then X^u is uo-complete, and every uo-Cauchy net in X is uo-convergent in X^u.
corollary

Let X be a Banach function space over a σ-finite measure space. Then any norm bounded positive increasing sequence in X converges a.e. to a real-valued measurable function.

Theorem 2

Let X be a vector lattice such that X_n separates points of X. Then X^u is uo-complete, and every uo-Cauchy net in X is uo-convergent in X^u.
Universal completion

Recall that a vector lattice X is said to be:

- laterally complete if every collection of mutually disjoint positive vectors admit a supremum;
- universally complete if it is order complete and laterally complete.
Universal completion

Recall that a vector lattice X is said to be:

- laterally complete if every collection of mutually disjoint positive vectors admit a supremum;
- universally complete if it is order complete and laterally complete.
Universal completion

Recall that a vector lattice X is said to be:

- laterally complete if every collection of mutually disjoint positive vectors admit a supremum;
- universally complete if it is order complete and laterally complete.
Uo-complete

Theorem 2

Let X be a vector lattice such that X_n separates points of X. Then X^u is uo-complete, and every uo-Cauchy net in X is uo-convergent in X^u.

Step 1:

- $X \sim \bigoplus C_{\gamma}$;
- Moreover, $X \sim \bigoplus B_{\sigma}$ and for each σ, B_{σ} is a principal band;
Motivation

Main results

Theorem 2

Let X be a vector lattice such that X_{\sim} separates points of X. Then X^u is uo-complete, and every uo-Cauchy net in X is uo-convergent in X^u.

Step 1:

- $X \sim \bigoplus C_\gamma$;
- Moreover, $X \sim \bigoplus B_\sigma$ and for each σ, B_σ is a principal band;
Theorem 2

Let X be a vector lattice such that X_n separates points of X. Then X^u is uo-complete, and every uo-Cauchy net in X is uo-convergent in X^u.

Step 1:

- $X \sim \bigoplus C_\gamma$;
- Moreover, $X \sim \bigoplus B_\sigma$ and for each σ, B_σ is a principal band;
Uo-complete

Theorem 2

Let X be a vector lattice such that X_n separates points of X. Then X^u is uo-complete, and every uo-Cauchy net in X is uo-convergent in X^u.

Step 1:

- $X \sim \oplus C_\gamma$;
- Moreover, $X \sim \oplus B_\sigma$ and for each σ, B_σ is a principal band;
Step 2:

Lemma

Let X be a vector lattice with a weak unit $u > 0$. If X has the countable sup property, then X^u also has the countable sup property.
Step 3:

Proposition

Let X be an order complete vector lattice. If X is universally complete, and, in addition, has the countable sup property, then it is uo-complete.

Remark:

- If X is uo-complete, then it is universally complete.
Step 3:

Proposition

Let X be an order complete vector lattice. If X is universally complete, and, in addition, has the countable sup property, then it is uo-complete.

Remark:

- If X is uo-complete, then it is universally complete.
Step 3:

Proposition

Let X be an order complete vector lattice. If X is universally complete, and, in addition, has the countable sup property, then it is uo-complete.

Remark:

- If X is uo-complete, then it is universally complete.
Uo-complete

Theorem 3

Let X be a vector lattice, and D be a maximal collection of disjoint positive nonzero vectors in X. Suppose that the band B_d generated by d has the countable sup property for each $d \in D$. Then X^u is uo-complete, and every uo-Cauchy net in X is uo-convergent in X^u.
Thanks for your attention!