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Risk measures

(Ω,Σ,P) atomless probability space.

Space of financial assets: X , subspace of L0(Ω,Σ,P) containing 1
so that |f | ≤ |g |, g ∈ X =⇒ f ∈ X .

A coherent risk measure is a functional ρ : X → (−∞,∞] such
that

1. ρ(f + m) = ρ(f )−m for all f ∈ X and all m ∈ R.

2. f ≥ g , f , g ∈ X =⇒ ρ(f ) ≤ ρ(g).

3. ρ(f + g) ≤ ρ(f ) + ρ(g) for all f , g ∈ X ,

4. ρ(λf ) = λρ(f ) for all f ∈ X and all 0 ≤ λ ∈ R.

A coherent risk measure is completely determined by the convex
cone C = {f ∈ X : ρ(f ) ≤ 0}.
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Fenchel-Moreau duality

(Fenchel-Moreau duality) Let (X , τ) be a LCTVS and let
ρ : X → (−∞,∞] be convex and proper (not identically ∞).
Define ρ∗ on X ∗ by

ρ∗(ϕ) = sup{ϕ(f )− ρ(f ) : f ∈ X}.

Then
ρ(f ) = sup{ϕ(f )− ρ∗(ϕ) : ϕ ∈ X ∗}

if and only if ρ is τ -lower semicontinuous.

Fatou property for ρ: If fn → f a.e., and there exists g ∈ X such
that |fn| ≤ g for all n, then ρ(f ) ≤ lim inf ρ(fn).

The convergence described is called order convergence, fn
o→ f .
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Main problem

X space of financial assets, endowed with a locally convex
topology τ . ρ coherent risk measure on X . Does Fatou property
for ρ guarantee Fenchel-Moreau duality?

Translated into language of convex sets: ((X , τ) has P)

(X , τ) LCTVS, order ideal of ⊆ L0(Ω,Σ,P) containing constants:
1 ∈ X , |f | ≤ |g |, g ∈ X =⇒ f ∈ X .

C convex set in X , order closed (= closed under dominated
convergence) =⇒ C is τ -closed.

Main Problem: Which (X , τ) has P?
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Known examples

(X , τ) has P if

(X , τ) LCTVS ⊆ L0(Ω,Σ,P), 1 ∈ X , |f | ≤ |g |, g ∈ X =⇒ f ∈ X .
C convex set in X , order closed
(i.e., fn ∈ C , fn

o→ f ∈ X =⇒ f ∈ C ) =⇒ C is τ -closed.

1. X Banach lattice under natural order in L0(Ω,Σ,P). Then
(X , ‖ · ‖) and (X ,weak) have P.

2. (Delbaen) (L∞(Ω,Σ,P), σ(L∞, L1)) has P.
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Orlicz spaces

Common models for the space of financial assets are the Orlicz
spaces.

Let Φ : [0,∞)→ R be increasing, convex with Φ(0) = 0 and
limt→∞Φ(t) =∞. The Orlicz space

LΦ = {f : ∃λ <∞ s.t.

∫
Φ
( |f |
λ

)
dP ≤ 1}.

The smallest λ in the inequality above is ‖f ‖Φ.
The subspace consisting of all f ∈ LΦ such that the integral above
is finite for all λ > 0 is called the Orlicz heart HΦ.
It is the norm closure of L∞ in LΦ.

Φ satisfies the ∆2-condition (Φ ∈ ∆2) if lim supt→∞
Φ(2t)
Φ(t) <∞.
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Duality of Orlicz spaces

Let Φ be an Orlicz function such that LΦ 6= L1. The conjugate
Orlicz function Ψ is given by

Ψ(t) = sup{ts − Φ(s) : 0 ≤ s <∞}.

Facts:
1. Φ ∈ ∆2 ⇐⇒ LΦ = HΦ ⇐⇒ LΦ does not contain a lattice
isomorphic copy of `∞.

2. (HΨ)∗ = LΦ.

3. LΨ ⊆ (LΦ)∗, with equality if and only if Φ ∈ ∆2.

4. Ψ ∈ ∆2 if and only if LΦ does not contain a lattice isomorphic
copy of `1.
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Which (LΦ, σ(LΦ,HΨ)) has P?

(Subsequence splitting principle) Suppose that fn ∈ LΦ is norm
bounded and fn → 0 a.e. Then there is a subsequence (fnk ) and a
decomposition fnk = gk + hk , where (gk) is pairwise disjoint, (hk)
is order bounded in LΦ and gkhk = 0 for all k .

If Ψ ∈ ∆2, then `1 6≤ LΦ, then gk → 0 weakly and hence some
convex average (uk) of (fnk ) is order bounded and uk → 0 a.e. So

uk
o→ 0.

Conclusion: Assume that Ψ ∈ ∆2.
1. Let C be a norm bounded convex set in LΦ. If f lies in the
σ(LΦ,HΨ)-closure of C , then there is a sequence (fn) in C ,
dominated in LΦ, that converges to f a.e.

2. Every norm bounded order closed convex set is
σ(LΦ,HΨ)-closed.

Remark: In fact, it is enough to use Cesaro averages of fnk if we
use the fact that Φ ∈ ∆2 =⇒ LΦ has an upper p-estimate.
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Which (LΦ, σ(LΦ,HΨ)) has P?

Use Krein-Smulyan!

If Ψ ∈ ∆2, every order closed convex set is σ(LΦ,HΨ)-closed.
(LΦ, σ(LΦ,HΨ)) has P.
(Independently proved by Delbaen & Owari.)

Converse also holds.

Theorem
TFAE.
1. Every order closed convex set in LΦ is σ(LΦ,HΨ)-closed.
2. Ψ ∈ ∆2.
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Which (LΦ, σ(LΦ, LΨ)) has P?

Easy:
1. If Φ ∈ ∆2, then LΦ = HΦ and so σ(LΦ, LΨ) is the weak
topology. It has P.

2. If Ψ ∈ ∆2, then LΨ = HΨ. So we are back to the previous case
and P holds.

Biagini & Fritelli (2009) claimed that (LΦ, σ(LΦ, LΨ)) always has
P. But a gap in the proof was soon noticed.

Gao and Xanthos (preprint 2015, to appear) produced a large class
of Φ so that (LΦ, σ(LΦ, LΨ)) fails P.
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Which (LΦ, σ(LΦ, LΨ)) has P?

Start with a norm bounded order closed convex C ⊆ LΦ. Assume

that 0 ∈ C
σ(LΦ,LΨ)

, can we show 0 ∈ C?

Subsequence splitting doesn’t work.

If Ψ /∈ ∆2, then `1 ≤ LΦ. Let (fn) be a disjoint `1 sequence in LΦ.
Then fn → 0 a.e. but no average of (fn) can be order bounded.

11 / 20



Which (LΦ, σ(LΦ, LΨ)) has P?

Start with a norm bounded order closed convex C ⊆ LΦ. Assume

that 0 ∈ C
σ(LΦ,LΨ)

, can we show 0 ∈ C?

Subsequence splitting doesn’t work.

If Ψ /∈ ∆2, then `1 ≤ LΦ. Let (fn) be a disjoint `1 sequence in LΦ.
Then fn → 0 a.e. but no average of (fn) can be order bounded.

11 / 20



Another splitting

Let C be a norm bounded order closed convex set in BLΦ . Assume

that 0 ∈ C
σ(LΦ,LΨ)

.

Fix 0 ≤ g ∈ LΨ and n ∈ N.
1. Choose f ∈ C so that

∫
|f |g ≤ 1.

2. Split f as f = f χ{|f |>m} + f χ{|f |≤m} = f g ,n1 + f g ,n2 ,

where m is chosen so large that
∫
{|f |>m}Φ(|f |) ≤ 1

2n .

Fix n. Then {f g ,n2 : 0 ≤ g ∈ LΨ} ⊆ HΦ and 0 lies in its
σ(HΦ, LΨ)-closure = weak closure.

Take convex average. Get an, bn so that an + bn ∈ C and that∫
Φ(|an|) ≤ 1

2n , ‖bn‖Φ ≤ 1
2n .

Then (pointwise sum)
∑
|an|+

∑
|bn| ∈ LΦ.

Also, an + bn → 0 in measure =⇒ subsequence → 0 a.e. (and
order bounded)
Thus 0 ∈ C since C is order closed.
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where m is chosen so large that
∫
{|f |>m}Φ(|f |) ≤ 1

2n .

Fix n. Then {f g ,n2 : 0 ≤ g ∈ LΨ} ⊆ HΦ and 0 lies in its
σ(HΦ, LΨ)-closure = weak closure.

Take convex average. Get an, bn so that an + bn ∈ C and that∫
Φ(|an|) ≤ 1

2n , ‖bn‖Φ ≤ 1
2n .

Then (pointwise sum)
∑
|an|+

∑
|bn| ∈ LΦ.

Also, an + bn → 0 in measure =⇒ subsequence → 0 a.e. (and
order bounded)
Thus 0 ∈ C since C is order closed.
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Krein-Smulyan property

Recall: (LΦ, σ(LΦ, LΨ)) has P
def⇐⇒ every order closed convex set

in LΦ is σ(LΦ, LΨ)-closed.

We have seen that :
If C is a norm bounded order closed convex set in LΦ, then it is
σ(LΦ, LΨ)-closed.

Corollary. (LΦ, σ(LΦ, LΨ)) has P if and only if σ(LΦ, LΨ) has
Krein-Smulyan property, i.e., if C is a convex set such that
C ∩ nBLΦ is σ(LΦ, LΨ)-closed for all n, then C is σ(LΦ, LΨ)-closed.
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Which σ(LΦ, LΨ) has KS property?

Theorem
TFAE.
1. (LΦ, σ(LΦ, LΨ)) has P.
2. σ(LΦ, LΨ) has KS property.
3. Either Φ or Ψ ∈ ∆2.

(1) ⇐⇒ (2) ⇐= (3) have been discussed.

We need: if Φ and Ψ /∈ ∆2, construct a convex set C in LΦ so that

C ∩ nBLΦ is σ(LΦ, LΨ)-closed for all n, 0 ∈ C
σ(LΦ,LΨ)

and 0 /∈ C .
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A counterexample

We need: if Φ and Ψ /∈ ∆2, construct a convex set C in LΦ so that

C ∩ nBLΦ is σ(LΦ, LΨ)-closed for all n, 0 ∈ C
σ(LΦ,LΨ)

and 0 /∈ C .

Main idea: If Φ and Ψ /∈ ∆2, then LΦ contains a lattice isomorphic
copy of `∞ ⊕ `1 and σ(LΦ, LΨ) induces the topology w∗ ⊕ w on
`∞ ⊕ `1.

A set S in `∞ ⊕ `1 = `∞ ⊕ (⊕`1)1 that contains 0 in its
w∗ ⊕ w -closure but no bounded subset does.

S = {xk,j : k , j ∈ N}, where

xk,j = (0, . . . , 0,
jth coord

2k , 2k , . . . )⊕ (0, . . . , 0,
jth coord

ej
2k

, 0, . . . ).

Example for C is C = convex hull of S .
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Law invariant sets (What if the convex set is nicer?)

A subset S of L0(Ω,Σ,P) is law invariant if f ∈ S , g ∈ L0, g
dist
= f

implies g ∈ S .

For law-invariant convex sets in LΦ ,we have

Theorem
Let C be a law invariant convex subset of LΦ. Then C is order
closed ⇐⇒ σ(LΦ, LΨ)-closed ⇐⇒ σ(LΦ,HΨ)-closed.

Enough to show order closed =⇒ σ(LΦ,HΨ)-closed.
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Law invariant sets

To show order closed =⇒ σ(LΦ,HΨ)-closed.

Lemma
f ∈ LΦ =⇒ there exists a sequence of finite measurable partitions
(πn) of Ω so that E[ f |πn]

o→ f .

Lemma
C convex, norm closed, law-invariant set in LΦ =⇒ E[ f |π] ∈ C
for all f ∈ C and all finite partition π of Ω.

fα ∈ C , fα → f w∗.
Choose πn as above. Then E[ fα|πn] ∈ C .
E[ fα|πn]→ E[ f |πn] weakly.
C order closed convex =⇒ norm closed =⇒ weakly closed.
So E[ f |πn] ∈ C .
C order closed. So f ∈ C .
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Law invariant sets

Jouini, Schachermayer & Touzi (2006)
Let C be a law-invariant convex set in L∞. Then C is norm closed
⇐⇒ C is σ(L∞, L1)-closed. ⇐⇒ C is order closed.

Theorem
Every norm closed law-invariant convex set in LΦ is
σ(LΦ, LΨ)-closed if and only if Φ ∈ ∆2.

If Φ /∈ ∆2, BHΦ is norm closed law-invariant but not
σ(LΦ, LΨ)-closed.
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Thank You



Proof of last lemma

Lemma
C convex, norm closed, law-invariant set in LΦ =⇒ E[ f |π] ∈ C
for all f ∈ C and all finite partition π of Ω.

Suppose f ∈ C , WLOG
∫

Φ(|f |) ≤ 1.
Given N, choose b > (N − 1)c and disjoint sets A1, . . . ,AN :

A1 = {|f | > b} and
1

P((∪Ai )c)

∫
(∪Ai )c

f dP ≈
∫

Ω
f dP.

Construct fi from f by swapping f χA1 with f χAi
, 1 ≤ i ≤ N.

Let g = 1
N

∑N
i=1 fi . Then |g | ≤ 2

N |fi | on Ai and g = f outside ∪Ai .
g = gχ∪Ai

+ f χ(∪Ai )c .

The first part is dominated by 2
N |f | and hence has small norm. he

second part belongs to L∞.
Average with rearrangements until the second part is nearly the
constant

∫
f dP.
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