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Structure of the Talk

e Background

— Decision theory

— Theory of large games

x Large non-anonymous games
x Large anonymous games

— Walrasian general equilibrium theory

e Lilenberg-Sonnenschein research program.
Results with Metin Uyanik.



Decision Theory

1. T is a space of states,

2. A is a space of consequences
3. AL is the space of acts,

4. > be a binary relation on AL

Savage’s problem: Find assumptions on
>~ that guarantee, and are guaranteed by, the
existence of a finitely-additive (subjective) prob-
ability p on T" and a real-valued (utility) func-
tion u on A such that

f =g [gul(f(t))du(t) > [su(g(t))du(t).

Remark: Anscombe-Aumann reformulate the
question by considering binary relations on
functions from 7' to probability measures (lot-
teries) M(A) on A. This is to say binary re-
lations on M (A)L.



Large Non-Anonymous Games

A non-anonymous (individualized) game
G is an element of Meas(T,U) where

1. (T,7T,\) is a probability space of players,
2. A is a compact space of actions,

3. M(A) is the space of probability measures
on A endowed with the weak™ topology,

4. w is a continuous function on A x M(A),

5. U the space of payoff functions u endowed
with its Borel o-algebra B(U) generated by
the sup-norm topology.

We shall also denote G(t) by us, and since
one can always rescale the payoffs, we assume
that there is M > 0 such that for all ¢t €
T, ||ut]| < M.



Theorem 1 [Schmeidler| Let (T, 7T, \) be
an atomless probability space and G a large
non-anonymous game with a finite action
set A. Then there exists a measurable func-
tion f T — A such that for A-almost all
teT,

wr(f(), dof ™Y > wy(a, hof ™) for all a € A.

Remark: If A has a linear structure on it,
then there is a straightforward reformulation
of the above result in terms of the integral
rather than the law of the function f.



Large Non-Anonymous Games: A Pu-
rification Result

A mixed strategy profile g (respectively
a pure strategy profile g*) is an element of

Meas(T, M(A)).

A pure strategy profile g* is an element of
Meas(T', A).

Theorem 2 Any mixed strateqy equilibrium
g for the game G has a purification.



Anonymous Games

An anonymous (distributionalized) game
is a probability measure y in M(U).

An anonymous game is said to be dispersed
if 1 is atomless.

An equilibrium 7 of the game 1 is an ele-
ment of M(A x U) with marginal measures
74 and 774 such that

L. U 1S L,
2.71(Br) =7({(u,a) € (U X A) :ula,Tyq) >
u(x,74) forall x € A}) = 1.

An equilibrium 7 can be symmetrized it
there exist h € Meas(U, A) and another equi-
librium 7% such that 74 = 73 and 7°(Graphy,) =
1, where Graph;, = {(u,h(u)) € (U x A)
u € U}. In this case, 77 is said to be a sym-
metric equilibrium.



Large Anonymous Games: A Sym-
metrization Result

Theorem 3 Fvery anonymous game v has
an equilibrium.

Theorem 4 Let p be a dispersed anony-
mous game such that A is a finite set. Then
there exists a symmetric equilibrium.

Theorem 5 Fvery equilibrium of a dispersed
large anonymous game 1 can be symmetrized
with a countable action set A.

Corollary 1 A symmetric Cournot-Nash equi-
librium distribution exists for a game p with
action set A whenever i 1s atomless and A

15 countable.
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Binary Relations

Let X be a set. A binary relation R on X is a subset R C X x X. Define

Rt = {(xy) | (y,x) €R},
R(x) = {y[(xy)€R}
RMx) = {y|(x)eR},

where
R~ denote the transpose of R,
R(x) the upper section of R at x and

R~1(x) the lower section of R at x.

Let
A ={(x,x)|x € X} and

R¢ denote the complement of R.



Properties of Binary Relations

Let R be a binary relation on a set X and define / = RN R~ and P = R\R™L.
Then, R is

reflexive if A C R,

complete if X x X = RUR™,

symmetric if R = R™1,

asymmetric if RN R~ = (),

nontrivial if R # ),

transitive if R=1(x) x R(x) C R for all x € X,

negatively transitive if R¢ is transitive,

semitransitive if P~1(x) x I(x) C P and I71(x) x P(x) C P for all x € X.

A topological space X is connected if it is not the union of two nonempty,

disjoint open sets. A subset of X is connected if it is connected as a subspace.



Theorem (Eilenberg)

If X is a connected topological space, then every complete and antisymmetric
binary relation on it with closed sections is transitive.

Theorem (Sonnenschein)

(a) If X is a connected topological space, then every complete and

semitransitive binary relation on it with closed sections is transitive.

(b) If X is a connected topological space, then every complete binary relation
on it with closed sections such that its symmetric part is transitive with
connected sections, is transitive.

Theorem (Schmeidler)

If X is a connected topological space, then every transitive binary relation on it
with closed sections such that its asymmetric part is nontrivial with open
sections, is complete.



Theorem (1)

Let X be a topological space and R denote a binary relation on it with

symmetric part | and asymmetric part P. Then the following are equivalent.
(a) X is connected.

(b) Every R that is antisymmetric with closed sections, and whose P is
nontrivial with open sections, is complete and transitive.

(c) Every R that is semitransitive with closed sections, and whose | is transitive,
and whose P is nontrivial with open sections, is complete and transitive.

(d) Every R that has closed sections, and whose | is transitive with connected
sections, and whose P is nontrivial with open sections, is complete and
transitive.

(e) Every R that is transitive with closed sections, and whose P is nontrivial
with open sections, is complete.



A Weakening of Connectedness and Eilenberg-Sonnenschein

A topological space X is connected if it is not the union of two nonempty,

disjoint open sets.

A component of a topological space is a maximal connected set in the space,
that is, a connected subset which is not properly contained in any connected
subset.

A topological space is k-connected if it has at most k components.

1-connectedness is equivalent to connectedness

Any k-connected space is /-connected for all | > k.



Nontriviality

R is a binary relation on a topological space X and C = {Cx}«eck denote the

collection of the components of X.
R is called nontrivial if there exists x,y € X such that (x,y) € RUR™L.

R is called |K|-nontrivial if or all components C, C’ of X, there exists x € C
and y € C’ such that (x,y) € RUR™L.

For a connected space, the nontriviality and 1-nontriviality are equivalent.

nontriviality within and across the components.

For ¢ < |K]|, R is called ¢-nontrivial if there exist subcollections
Ct={C},...,C}}and C? = {C},..., C?} of C such that for all i,j < ¢, there
exists (x,y) € (C! x C?)U (G} x C?) such that (x,y) € R.

For ¢ = |K], ¢-nontriviality and |K|-nontriviality are equivalent.



Theorem (2)

Let X be a topological space and R denote a binary relation on it with
symmetric part | and asymmetric part P. Then the following are equivalent.
(a) X is 2-connected.

(b) Every R that is complete and antisymmetric with closed sections, is
transitive.

(c) Every R that is complete and semitransitive with closed sections, is
transitive.

(d) Every R that is antisymmetric with closed sections, and whose P is
2-nontrivial with open sections, is complete and transitive.

(e) Every R that is semitransitive with closed sections, and whose | is transitive,
and whose P is 2-nontrivial with open sections, is complete and transitive.
(f) Every R that has closed sections, and whose | is transitive with connected

sections, and whose P is 2-nontrivial with open sections, is complete and
transitive.



Theorem (3)

Let X be a topological space and k be a positive integer. Then the following
are equivalent.

(a) X is k-connected.

(b) Every R that is that is antisymmetric with closed sections, and whose P is
k-nontrivial with open sections, is complete.

(c) Every R that is semitransitive with closed sections, and whose | is

transitive, and whose P is k-nontrivial with open sections, is complete.

(d) Every R that has closed sections, and whose | is transitive with connected
sections, and whose P is k-nontrivial with open sections, is complete.



An Example of a Nontransitive Binary Relation

R is not necessarily transitive for k > 2
X =(0,1)U (1,2) U(2,3) endowed with Euclidean metric
X is 3-connected

Let R be an asymmetric binary relation defined as follows: (x,y) € R if
x,y € Ce,x < y,if xe (0,1) and y € (1,2), if x € (1,2) and y € (2,3),
and if x € (2,3) and y € (0,1)

R is complete and has closed sections

R is nontransitive



Notions of Transitivity

Let R be a relation on a set X, | denote its symmetric part and P denote its

asymmetric part.
T : denote R is transitive,
NT : denote P is negatively transitive,
PP : denote P is transitive,
Il : denote [ is transitive,
Pl : denote P~1(x) x I(x) C P for all x € X,

IP : denote /=1(x) x P(x) C P for all x € X.



Theorem (4)

Let R be a binary relation on a set X such that | and P denote its symmetric
and asymmetric parts, respectively. Then,

(a) PP is independent of Pl IP, I, severally and collectively,
) T is independent of NT,
) T< PP, PLIP, I,
) NT = PP, Pl IP,
) NT&Il = T,

)

if X is a connected topological space and the sections of R are closed and
of P are open, then PI&IP = NT, T = NT, PI&IP&Il = T,

(g) if X is a connected topological space and the sections of | are connected, of
R are closed and of P are open, then Il = PI&IP.



Disontinuous Binary Relations

Let X be a topological space, R be a binary relation on it and P denote its
asymmetric part. R is nonsatiated in A C X if P(x) # 0 for all x € A.
A subset A of X is called R-bounded above if there exists y € X such that
VS mxEA’L?(X)'
(A1) R has closed upper sections, P has open upper sections, and there
exists X € X such that P(X) # () and R is nonsatiated in P(X).

(A2) R has closed upper sections, P has open upper sections, and there
exists X € X such that P(x) # () and every two-element subset of P(x) is
R-bounded above.

Theorem (5)

Let R be a binary relation on a connected topological space X such that its
symmetric part is transitive and its asymmetric part is negatively transitive.
Then, R is complete and transitive if R or R~ satisfies either (A1) or (A2).



Further Equivalence Results: Definitions

A binary relation R on a topological space X is fragile if there exist x,y € X
such that

(i) (x,y) € RA\RTH,
(ii) every open neighborhood of (x,y) contains (x',y’) ¢ RUR™L.

An asymmetric binary relation P on a topological space X has a continuous
representation if there exist two continuous real valued functions u and v on X
such that for all x,y € X, (x,y) € P if and only if u(x) < v(y).

Let P be a binary relation on a set X and define R = {(x,y) | (v,x) ¢ P}.
Then P is called strongly separable if there exists a countable subset A of X
such that

(x,y) € P implies 3x",y’ € A such that (x,x") € P, (x',y') € R and (y',y) € P.



Further Equivalence Results

Gerasimou 2013

Chateauneuf 1987

Theorem (1)

Let X be a topological space and R denote a binary relation on it with

symmetric part | and asymmetric part P. Then the following are equivalent.

(a) X is connected.

(b) Every R, R’ that are antisymmetric, complete and transitive with closed
sections, are either identical or inverse to each other.

(c) Every R that is incomplete and transitive with closed sections, and whose P
is nontrivial, is fragile.

(d) Every R that is asymmetric and has a continuous representation, is strongly
separable.



Sketch of the proof of Theorem 1

Assume (a).
(e) is due to Schmeidler (Theorem, 1971)
(c) follows from (e) since Theorem 4 (f) implies that R is transitive.

(d) follows from (c) since Theorem 4 (g) implies R is semitransitive and
Theorem 4 (f) implies R is transitive.

(b) follows from (c) and the observation that any antisymmetric binary
relation is semitransitive and its symmetric part is transitive.

Converse:

Assume X is disconnected. Then there exists a nonempty open set Y C X
which has an open complement Y°©.

Define R =Y x Y€. Then P = R. It is easy to check that R and P satisfy
the assumptions of (b), (c), (d), (e).

Since Y and Y'© are nonempty, therefore R is not complete.



Sketch of the proof of Theorem 2

Assume (a), i.e. X is 2-connected. If X has only one component, then (b)

follows from Theorem 1 (b). Assume X has two components Gy, G,.

(b) Let P denote the asymmetric part of R.

Since R is a complete with closed sections, P has open sections.

Claim. R71(x) N C; is connected for all x € X and i = 1,2. Proof. Assume

R=1(x) N C; is disconnected. Then there exist Y, Y nonempty and open
subsets of the subspace R~1(x) N C;. Since P(x) and R~1(x) are disjoint and
covers X, therefore {Y,[Y< U (P(y) N G)]} form an open partition of C;, hence
C; is disconnected. This furnishes us a contradiction.

Pick x,y,z € X such that y € R(x) and z € R(y). If x =y or y = z, then the
proof is trivial. For x # y # z, the definition of P implies y € P(x) and

z € P(y).

Assume x ¢ P71(z). Since z # x, R is complete and antisymmetric, therefore
z € P7Y(x). Since z € P(y), therefore X\ P(y) C X\{z}. Since y € P(x),
therefore X\ P(x) C X\{y}. Since x € P(z), therefore X\ P(z) C X\{x}.



Since R is complete and antisymmetric, therefore
R™Hy) € P7H2)UP(2), R7H(x) C P Y (y)UP(y), R™Y(2z) C P"H(x)UP(x).

Since (3, G, are components of X, each of x, y, z are contained in one and only
one of the components. The following three cases cover all possibilities: (i)

x,y € G, (i) x,ze G,y € G and (iii) x € G,y,z € G where  =1,2,i # j.
If x,y € G, then Claim implies R=1(y) N C; is connected. Note that

X,y € Rfl( ) N C;. Moreover, x € P(z) and y € P71(z). Hence,

{P~Y(z2) N C;, P(z) N G} is an open cover of R7Y(y) N C;. This furnishes us a
contradlct|on. If x,z € C;,y € G, then Claim implies R~1(x) N C; is connected.
Note that x,z € R~1(x) N C;. Moreover, z € P(y) and x € P~1(y). Hence,
{P=Y(x) N C;, P(y) N C;} is an open cover of R7*(x) N C;. This furnishes us a
contradlctlon. If x € G, y,z € Cj, then Claim implies R~%(z) N C; is connected.
Note that y,z € R71(z) N C;. Moreover, y € P(x) and z € P~}(x). Hence,
{P~Y(2)N G, P(z) N G;} is an open cover of R7Y(z) N C;. This furnishes us a
contradlctlon.

Therefore, x € P71(z), hence R is transitive.



(c) Let I denote the symmetric part of R and P denote its asymmetric part.
Since R is complete and / is transitive, therefore, / is an equivalence relation.
Define a relation R on the quotient space X|/ with respect to / as ([x],[y]) € R
if (x',y’) € R for all X' € [x] and y’ € [y]. Define P as the asymmetric part of
R. It follows from X is 2-connected that X|/ is 2-connected. If X|/ has one
component, then P is 2-connected implies P is nontrivial. Hence, Theorem 1

a = c implies R is transitive. If X|I has two components, then it follows from
P is 2-connected that P is 2-connected. Hence, a = e above implies R is

transitive. Therefore, it follows from the construction of R that R is transitive.

(d) Theorem 3 implies that R is complete. It follows from (b) that R is also

transitive.

(e), (f) Theorem 3 implies that R is complete. It follows from (c) that R is also

transitive.



(d), (e), (F) = (a) Assume X has at least three components. Then, as
illustrated in the argument in b = a, there exists a partition { Y7, Y2, Y3} of X
which is both open and closed. Define a binary relation on X as

R=(Y1x Y2)U(Y1 x Y3)U(Ya2 x Y3). Then, its symmetric part is | = () and
its asymmetric part is P = R. By construction, the sections of R is closed and
the sections of P are open. Moreover, R is semitransitive and antisymmetric,
and [ is transitive. Defining C* = {Y1, Y2} and C? = {Y5, Y3} implies P is

2-nontrivial. Finally, it is clear that R is incomplete.

(b), (c) = a The construction is illustrated in the example following Theorem 3.



Sketch of the proof of Theorem 3

(a) = (c) Assume X is k-connected and {Cy,..., Cx} denote the set of
components of X. Define K = {1,... k}.

Claim 1. Let x; € Ci,x; € C;. If (x;, %) € P, then P(x;) U P~1(x;) is both open
and closed and contains C; U ;.

Assume there exists x, y € X such that (x,y) ¢ RUR™L. Then, there exists
i,j € K such that x € C; and y € C;. Since P is k-nontrivial, there exists

xi € Cj,x; € G such that (x;,x;) € P U P*. Without loss of generality, assume
(xi,x;) € P. Then, it follows from Claim 1 that x € P(x;) U P~}(x;).

Claim 2. If x € P71(x;), then y € P71(x;). If x € P(x;), then y € P(x;).

It follows from Claim 2 that x; € P~1(x) N P~1(y) or x; € P(x) N P(y).
Therefore, [P~1(x) N P~1(y)] N Ci # 0 or [P(x) N P(y)] N C; # 0. Since

x € G,y € Cjand x,y ¢ P7Y(x) N P~1(y), therefore

G, G ¢ PN PTHy).

Claim 3. P(x) N P(y) and P~1(x) N P~1(y) are both open and closed.



It follows from Claim 3 that {P71(x) N P~Y(y) N G, [P~1(x) N P_l(y)]c NG}
is an open partition of C; or {P(x) N P(y) N G, [P(x) N P(y)]°N G} is an
open partition of C;. This furnishes us a contradiction with C; and C; being

components of X. Therefore, R is complete.
Parts (b), (d) follows from Theorem 4 (g).

(c), (b),(d) = a Assume X has at least three components. Then, as illustrated
in the argument in Theorem 2, (b) = (a), there exists a partition

{Y1,..., Ykt1} of X which is both open and closed. Define a binary relation on
X as
k [k+1
=0 (Ury
i=1 \ j=2

Then, its symmetric part is | = () and its asymmetric part is P = R. By
construction, the sections of R is closed and the sections of P are open.
Moreover, R is semitransitive and antisymmetric, and [/ is transitive. Defining
C'={Y1,..., Y} and C> = {Ys,..., Yii1} implies P is k-nontrivial. Finally,
it is clear that R is incomplete.



Sketch of the proof of Theorem 4

(b) Let X ={1,2,3}, R={(1,2)}. It is clear that R is transitive and P = R. It
follows from (1,3) ¢ P,(3,2) ¢ P and (1,2) € P that NT is not satisfied. Now
define a relation R" = {(1,2),(2,1)}. Then, P =0, hence NT holds. Since
(1,1),(2,2) ¢ R, therefore T is not satisfied.

(d) Assume y € P(x) and z € P(y). It follows from y € P(x) and NT that
either z € P(x) or y € P(z). Since z € P(y), therefore z € P(x), hence PP
holds. Now, assume y € P(x),z € I(y) and z ¢ P(x). It follows from z € I(y)
that y ¢ P(z). Then NT implies y ¢ P(x). This furnishes us a contradiction.
Hence, Pl holds. An analogous argument implies /P.

(e) Assume y € R(x) and z € R(y). First, recall that d implies PP, PI, IP. If

y € R71(x) and z € R71(y), then Il implies z € I(x), hence z € R(x). If

y ¢ R7Y(x) or z ¢ R71(y), then it follows from PP, PI,IP that z € P(x), hence
z € R(x).



(f) Note that P is negatively transitive if and only if (x,y) € P implies either
(x,z) € P of (z,y) € P for all x,y,z € X. Pick x,y € X such that (x,y) € P.
Now we will show that P(x) U P~1(y) = R(x) U R~Y(y). It is clear that

P(x) U P7Y(y) C R(x) U R™(y). In order to show the converse inclusion, pick
z € R(x). Assume z & P(x) U P~ Y(y), i.e. z¢ P(x) and y & P(z2). It follows
from z ¢ P(x) and z € R(x) that x € R(z). Hence (z,x) € I. It follows from IP
and (z,x) € I,(x,y) € P that y € P(z). This furnishes us a contradiction. Now
pick z € R7Y(y). Assume z ¢ P(x) U P71(y), i.e. z¢ P(x) and y ¢ P(2). It
follows from y ¢ P(z) and y € R(z) that z € R(y). Hence (y, z) € I. It follows
from Pl and (y,z) € I,(x,y) € P that z € P(x). This furnishes us a
contradiction. Hence, P(x) U P~1(y) = R(x) U R1(y). Since the left side of
the equality is an open set and the right side is closed, and X is connected,
P(x) U P=Y(y) = X. Therefore P is negatively transitive.



(g) Pick x,y,z € X such that y € P(x) and z € I(y). Assume z ¢ P(x). Then,
one and only one of the following holds: (a) z € /(x), (b) x € P(z), (c)

ze (R(x))n (Rfl(x))c. If z € I(x), then Il implies y € /(x). This furnishes
us a contradiction. Then, it follows from /I that /(x) N /(z) = 0. Since

X =1(x) UP(x)UP(x)U[(R(x))* N (R‘l(x))c] , therefore

2) = [P) N @I U [PTHx) N1(2)] U (RN (RA(x) N11(2)]-
It is clear that the three sets in square brackets are pairwise disjoint. Since P
has open sections and R has closed sections, the three sets in square brackets
are open in /(z). If x € P(z), then P(x) N /(z) and P=(x) N I(z) are
nonempty. Then P(x) N /(z) and the union of the remaining two sets in square
brackets form an open partition of /(z) which contradicts the connectedness of
I(z). Analogously, z € (R(x)) N (R’l(x))c furnishes us a contradiction with
the connectedness of /(z). Therefore, z € P(x), and hence Pl holds. An
analogous argument implies /P holds.
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