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Approximation Property

Approximation Property (AP): For any com-

pact set K ⊂ X there is a sequence of (bounded)

linear operators of finite rank on X that con-

verges to the identity uniformly on K.

If the finite rank operators can always be cho-

sen to have norm at most λ, X is said to have

the λ-bounded approximation property (λ-BAP).

Grothendieck called the 1-BAP the metric ap-

proximation property.

A reflexive space that has the AP also has the

1-BAP [Grothendieck 1955]. Here the spaces I’ll dis-

cuss are mostly reflexive or even superreflexive.



HAPpy Banach spaces

WBJ and A. Szankowski, Hereditary approximation property, An-

nals Math. (2012).

A Banach space has the hereditary approxima-

tion property (HAP) provided every subspace

has the approximation property. There are non

Hilbertian spaces that have the HAP [J, ’80],

[Pisier, ’88]. All of these examples are asymp-

totically Hilbertian; i.e., for some K and ev-

ery n, there is a finite codimensional subspace

all of whose n-dimensional subspaces are K-

isomorphic to `n2. An asymptotically Hilbertian

space must be superreflexive and cannot have

a symmetric basis unless it is isomorphic to a

Hilbert space. This led to two problems [J, ’80]:

1. Can a non reflexive space have the HAP?

2. Does there exist a non Hilbertian space with

a symmetric basis that has the HAP?



The HAP is very difficult to work with. It does

not have good permanence properties–there

are spaces X and Y that have the HAP s.t.

X⊕Y fails the HAP [Casazza-Garcia-J, ’01]. Spaces with

the HAP are HAPpy; working with them makes one miserable.

Consequently, one looks for nice properties that

imply that a space is HAPpy without implying

that the space is isomorphic to a Hilbert space.

Let Dn(X) := sup d(E, `n2), where the sup is

over all n-dimensional subspaces of X. Classi-

cal results Kwapien, Krivine-Maurey-Pisier, Davie-Figiel, Szankowski

yield that if X is HAPpy then in some sense X

must be close to a Hilbert space; in particular,

Dn(X) must grow more slowly than any power

of n maybe even more slowly than logn.



2. Does there exist a non Hilbertian space with

a symmetric basis that has the HAP?

The main result of [JS ’12] gives an affirmative

answer to problem 2 from [J, ’80]:

Theorem. There is a function f(n) ↑ ∞ s.t.

if for infinitely many n we have Dn(X) ≤ f(n),

then X has the HAP.

Dn(X) := sup d(E, `n2), where the sup is over

all n-dimensional subspaces of X.

There are non Hilbert spaces X with a symmet-

ric basis that satisfy the hypothesis Dn(X) ≤
f(n) for all n. X can be either a space of

Schlumprecht type or an Orlicz sequence space

LΦ with Φ(x) = x2g(x) with g(x) VERY slowly

varying.



Dn(X) := sup d(E, `n2), where the sup is over

all n-dimensional subspaces of X.

Theorem. There is a function f(n) ↑ ∞ s.t.

if for infinitely many n we have Dn(X) ≤ f(n),

then X has the HAP.

The proof combines the ideas in [J, ’80] with the

argument in [Lindenstrauss-Tzafriri, ’76] that a uni-

formly convex space that has the λ-uniform

approximation property (UAP) for some λ ac-

tually has the 1-UAP. It is basically an aver-

aging argument that turns out to work to not

just for sequences of operators whose norms

are uniformly bounded but also for operators

whose norms grow very slowly provided, of course,

that the sequence satisfies all sorts of extra conditions that I do

not state here. A variation of the argument in [J,

’80] provides the appropriate sequence of finite

rank operators. While the approach is simple

enough, the argument itself is fairly technical.



Dn(X) := sup d(E, `n2), where the sup is over

all n-dimensional subspaces of X.

Theorem. There is a function f(n) ↑ ∞ s.t.

if for infinitely many n we have Dn(X) ≤ f(n),

then X has the HAP.

The estimate of f(n) is good enough, by using

[Nielsen,Tomczak-Jaegermann ’92], to show that `2(X)

has the HAP for every weak Hilbert space X

that has an unconditional basis, but it remains

open whether `2(X) has the HAP for every

weak Hilbert space X.

Another application of this theorem is related

to the celebrated result of [Lindenstrauss-Tzafriri ’71]

that if every subspace of X is complemented,

then X is isomorphic to a Hilbert space.

T. Oikhberg asked, “If X is a separable Banach

space s.t. every subspace of X is isomorphic

to a complemented subspace of X, must X be

isomorphic to a Hilbert space?”



A Banach space X is complementably universal

for a class M of Banach space provided that

every space in M is isomorphic to a comple-

mented subspace of X. [Kadec ’71] constructed

a separable Banach space with the BAP that

is complementably universal for all separable

Banach spaces that have the BAP, while [JS

’76] proved that there is no separable Banach

space that is complementably universal for all

separable Banach spaces that have the AP. If a

Banach space is complementably universal for

all subspaces of itself and has the AP, then it

has the HAP, and hence must be “close” to a

Hilbert space.

Theorem. There is a separable, infinite di-

mensional Banach space not isomorphic to `2
that is complementably universal for all sub-

spaces of all of its quotients.



Theorem. There is a function f(n) ↑ ∞ s.t.

if for infinitely many n we have Dn(X) ≤ f(n),

then X has the HAP.

Theorem. There is a separable, infinite di-

mensional Banach space not isomorphic to `2
that is complementably universal for all sub-

spaces of all of its quotients.

Let X be any non Hilbertian separable Banach

space such that D4n(X) ≤ f(n) for all n. Let

(Ek) be a sequence of finite dimensional spaces

that is dense (in the sense of the Banach-

Mazur distance) in the collection of all finite

dimensional spaces that are contained in some

quotient of `2(X) and let Y be the `2-sum of

the Ek. Then Dn(Y ) ≤ f(n) for all n. If you

are old enough to know the right background,

you can give a short argument to prove that Y

is complementably universal for all subspaces

of all of its quotients.



Joint AP for a Banach space X and its subspace Y

T. Figiel, WBJ, A. Pe lczyński, Some approx-

imation properties of Banach spaces and Ba-

nach lattices, Israel J. Math. 183 (2011).

Let X be a Banach space, let Y ⊆ X be a

closed linear subspace, let λ ≥ 1. The pair

(X,Y ) is said to have the λ-BAP if for each

λ′ > λ and each subspace F ⊆ X with dimF <

∞, there is a finite rank operator u : X → X

such that ||u|| < λ′, u(x) = x for x ∈ F and

u(Y ) ⊆ Y .

If (X,Y ) has the λ-BAP then X/Y has the λ-

BAP. Thus by [Szankowski, ’09], for 1 ≤ p < 2 there

are subspaces Y of `p that have the BAP and

yet (`p, Y ) fails the BAP.

It is open whether (X,Y ) has the BAP if X,

Y , and X/Y all have the BAP but I don’t believe it.



If Y is a finite dimensional subspace of X and X

has the λ-BAP then also (X,Y ) has the λ-BAP

and hence also X/Y has the λ-BAP. That is,

the λ-BAP passes to quotients by finite dimen-

sional subspaces. By duality you get that if X∗

the λ-BAP then every finite codimensional sub-

space of X has the λ-BAP. In particular, every

finite codimensional subspace of an L1 space

has the 1-BAP. Had anyone previously noticed this?

In fact,

Proposition. X∗ has the λ-BAP iff (X,Y ) has

the λ-BAP for every finite codimensional sub-

space Y .



Proposition. X∗ has the λ-BAP iff (X,Y ) has
the λ-BAP for every finite dimensional sub-
space Y .

Proposition. Let X be a Banach space and
let Y ⊆ X be a closed subspace such that
dimX/Y = n <∞ and Y has the λ−BAP (resp.
Y has the λ−UAP ). Then the pair (X,Y ) has
the 3λ−BAP (resp. 3λ−UAP ).

This gives the corollary

Corollary. If X is a Banach space and Y has
the λ−BAP for every finite codimensional sub-
space Y ⊆ X, then X∗ has the 3λ−BAP .

Consequently, in contradistinction to the case
of commutative L1 spaces, for every λ there
are finite codimensional subspaces Y of the
non commutative L1 space S1 that fail the λ-
BAP because by [Szankowski ’81], B(`2) fails the AP.



Corollary. There is a subspace Y of `! that

has the AP but fails the BAP.

Proof. Start with a subspace X of `1 that fails

the approximation property [Szankowski ’78]. From

the existence of such a space it follows [WBJ

’72] that if we let Z be the `1−sum of a dense

sequence (Xn) of finite dimensional subspaces

of X, then Z∗ fails the BAP and yet Z has the

BAP. Then Y can be the `1−sum of a suitable

sequence of finite codimensional subspaces of

Z because of

Corollary. If X is a Banach space and Y has

the λ−BAP for every finite codimensional sub-

space Y ⊆ X, then X∗ has the 3λ−BAP .



We will not discuss the main results in

[FJP ’11] regarding the structure of various clas-

sical spaces that are widely used in analysis.

Many of them use the following lemma and

variations on it.

Lemma. If X is a L∞−space and Y has the

BAP then (X,Y ) has the BAP and hence also

X/Y has the BAP .

For general spaces X we do not know much

about when the implication “X and Y have

the BAP implies X/Y has the BAP” holds. Ar-

guably the most interesting question related to

this is:

If X is HAPpy (and, say, reflexive, so that AP

is equivalent to the 1-BAP), must (X/Y ) have

the BAP for every subspace Y ?



Erdos∗ meets Lidskii

Research with T. Figiel and A. Szankowski.

Let X be a Banach space and Y ⊆ X a closed

linear subspace. The pair (X,Y ) is said to have

the AP provided that the identity operator on

X is the limit, in the topology of uniform con-

vergence on compact sets, of bounded linear

finite rank operators on X that map Y into Y .

If the net of finite rank operators can be chosen

to be uniformly bounded by λ, say that (X,Y )

has the λ-BAP. It turns out (Grothendieck et al) that

if X is reflexive and (X,Y ) has the AP, then

(X,Y ) has the 1-BAP.

There is a dual form to the statement that the

pair (X,Y ) has the AP:

Proposition. (X,Y ) has the AP iff for every

nuclear operator T on X for which TX ⊂ Y and

T2 = 0 we have tr(T ) = 0.

∗Truth in advertising: Erdos is John; not Paul.



Proposition. (X,Y ) has the AP iff for every

nuclear operator T on X for which TX ⊂ Y and

T2 = 0 we have tr(T ) = 0.

The second condition says that for certain nu-

clear operators on X, the trace agrees with the

spectral trace.

From this you get that (X,Y ) has the AP for

every subspace Y (we say that X is jointly HAPpy) iff

every nuclear operator T on X for which T2 = 0

has zero trace (so that the trace of T equals its spectral

trace).

It is open whether a HAPpy space must be

jointly HAPpy. However, if Dn(X) → ∞ suffi-

ciently slowly, then X is not just HAPpy but

even jointly HAPpy (not written up.)



More generally, we consider the following con-

cept.

Let N be a nest of closed subspaces of X. The

pair (X,N ) is said to have the AP provided that

the identity operator on X is the limit, in the

topology of uniform convergence on compact

sets, of bounded linear finite rank operators on

X that map Y into Y for every Y ∈ N .

If the net of finite rank operators can be chosen

to be uniformly bounded by λ, say that (X,N )

has the λ-BAP.

If X is reflexive and (X,N ) has the AP, then

(X,N ) has the 1-BAP.



(X,N ) has the AP provided that the identity

operator on X is the limit, in the topology

of uniform convergence on compact sets, of

bounded linear finite rank operators on X that

map Y into Y for every Y ∈ N .

Theorem. (Erdos meets Lidskii) TFAE

1. (X,N ) has the AP for every nest N .

2. every quasi-nilpotent nuclear operator on X

has zero trace.

3. tr(T ) =
∑
λn(T ) for every nuclear operator

T on X whose eigenvalues λn(T ) are absolutely

summable.

[Lidskii ’59, Grothendieck ’56]: Hilbert sp. satisfy (3).

[Erdos ’68]: Hilbert spaces satisfy (1).

[Erdos ’74]: (1)⇒ (2) for a Hilbert space.

[Pisier ’88]: Weak Hilbert spaces satisfy (3).

Consequently, weak Hilbert spaces satisfy (1).



Call X Lidskii if it satisfies the conditions in

Theorem. (Erdos meets Lidskii) TFAE

1. (X,N ) has the AP for every nest N .

2. every quasi-nilpotent nuclear operator on X

has zero trace.

3. tr(T ) =
∑
λn(T ) for every nuclear operator

T on X whose eigenvalues λn(T ) are absolutely

summable.

Weak Hilbert spaces are Lidskii [Pisier ’88]. Any-

thing else?

To answer this question, we will have to re-

call one of the many equivalent definitions of

a weak Hilbert space.



For ε = (ε1, . . . , εn) ∈ BnX∗ and x = (x1, . . . , xn) ∈
BnX, let

G(ε, x) = det[〈εi, xj〉]ni,j=1.

Define

Gn(X) = sup{|G(ε, x)| : ε ∈ BnX∗, x ∈ B
n
X}.

X is a weak Hilbert (WH) space if

sup
n
Gn(X)

1
n <∞.

Theorem. If lim infnGn(X)
1
n < ∞, then X is

Lidskii.

But are there any non weak Hilbert spaces that

satisfy the hypothesis of the theorem?



Are there any non weak Hilbert spaces that
satisfy the hypothesis of the theorem?

Theorem. If lim infnGn(X)
1
n < ∞, then X is

Lidskii.

X is asymptotically Hilbertian of polynomial
growth if there is a constant λ such that there
are subspaces Y1, Y2, · · · ⊂ X with dimX/Yn =
O(nλ) and lim inf Dn(Yn) < ∞. If the Yn can
be chosen to be uniformly complemented, X
is complementably asymptotically Hilbertian of
polynomial growth.

Theorem. If X is complementably asymptot-
ically Hilbertian of polynomial growth then
lim infnGn(X)

1
n <∞.

In particular, X can be of the form (
∑
`knpn)2

with pn ↓ 2 and kn ↑ ∞ fast enough so that
X is not isomorphic to a Hilbert space. With
these you can see that the direct sum of two
Lidskii spaces need not be Lidskii; in fact, need
not be HAPpy.



Some Open Problems

Question 1. Suppose Gn(X) is bounded or

Gn(X)
1
n → 1. Does it imply that X is (isomor-

phic to) a Hilbert space?

Question 2. If X is isomorphic to a Hilbert

space, does it imply that Gn(X) is bounded or

that Gn(X)
1
n → 1?

Question 3. Is every HAPpy space jointly HAPpy?

Question 4. Is every HAPpy space Lidskii?

Question 5. Suppose that Dn(X) goes to in-

finity sufficiently slowly. Must X be a Lidskii

space?


