
Cauchy quotient means and their properties

Martin Himmel and Janusz Matkowski

1Department of Mathematics
University of Zielona Góra
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Beta-type functions

Motivated by the relationship between the Euler Gamma function
Γ : (0,∞)→ (0,∞) and the the Beta function B : (0,∞)2 → (0,∞)

B (x , y) =
Γ (x) Γ (y)

Γ (x + y)
, x , y > 0,

we introduce a new class of functions, called beta-type functions.

Definition [Himmel, Matkowski 2015]

Let a ≥ 0 be fixed. For f : (a,∞)→ (0,∞) , the two variable function
Bf : (a,∞)2 → (0,∞) defined by

Bf (x , y) =
f (x) f (y)

f (x + y)
, x , y > a,

is called the beta-type function, and f is called its generator.

With this definition we have: BΓ = B.
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Means and beta-type functions

We are interested in answering when the beta-type function is a bivariable
mean. The answer is given in the following

Theorem 1.

Let f : (0,∞)→ (0,∞) be an arbitrary function. The following conditions
are equivalent:
(i) the beta-type function Bf : (0,∞)2 → (0,∞) is a bivariable mean, i.e.

min (x , y) ≤ Bf (x , y) ≤ max (x , y) , x , y > 0;

(ii) there is an additive function α : R→ R such that

f (x) = 2xeα(x), x > 0;

(iii) Bf is the harmonic mean in I ,

Bf (x , y) =
2xy

x + y
, x , y > 0.
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Mean in an interval

Definition 2.

Let I ⊆ R be a non-empty interval, k ∈ N, k ≥ 2, and M : I k → R. The
function M is called a mean in the interval I , if

min (x1, . . . , xk) ≤ M(x1, . . . , xk) ≤ max (x1, . . . , xk)

holds true for all x1, . . . , xk ∈ I .
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Beta-type functions as k-variable means

Theorem 3.

Let k ∈ N, k ≥ 2, be fixed, let f : (0,∞)→ (0,∞) and
Bf ,k : (0,∞)k → (0,∞) defined by

Bf ,k (x1, . . . , xk) :=
f (x1) · · · f (xk)

f (x1 + · · ·+ xk)
, x1, . . . , xk > 0.

The following conditions are equivalent:
(i) Bf ,k is a mean in (0,∞);
(ii) there is an additive function α : R→ R such that

f (x) = k k−1
√
xeα(x), x > 0;

(iii) Bf ,k is the beta-type mean, i.e.

Bf ,k (x1, . . . xk) = k−1

√
kx1 · · · xk

x1 + . . .+ xk
, x1, · · · , xk > 0.
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Beta-type mean

Definition 4.

For any k ∈ N, k ≥ 2, the function Bk : (0,∞)k → (0,∞) defined by

Bk(x1, . . . , xk) = k−1

√
kx1 · · · xk

x1 + . . .+ xk
, x1, · · · , xk > 0

is called the k-variable beta-type mean.
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The four classes of Cauchy quotients.

Cauchy quotients

beta-type function (exponential Cauchy quotient)

Bf ,k (x1, . . . , xk) =
f (x1) · . . . · f (xk)

f (x1 + . . .+ xk)

logarithmic Cauchy quotient

Lf ,k (x1, . . . , xk) =
f (x1) + . . .+ f (xk)

f (x1 · . . . · xk)

multiplicative (or power) Cauchy quotient

Pf ,k (x1, . . . , xk) =
f (x1) · . . . · f (xk)

f (x1 · . . . · xk)

additive Cauchy quotient

Af ,k (x1, . . . , xk) =
f (x1) + . . .+ f (xk)

f (x1 + . . .+ xk)
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Questions on Cauchy quotients

where f : I → (0,∞) is an arbitrary function defined on a suitable interval,
and we asked:

When is Bf ,k a mean?

When is Lf ,k a mean?

When is Pf ,k a mean?

When is Af ,k a mean?

Answer:

In each of the first three cases there exists exactly one mean that can
be written in the form of a beta-type function, a logarithmic Cauchy
quotient or a power Cauchy quotient, respectively.

No mean of the form Af ,k - in any interval I .
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When Lf ,k is a mean?

Theorem 5.

Let k ∈ N, k ≥ 2, be fixed, f : (1,∞)→ (0,∞) be an arbitrary function.
The following conditions are equivalent:

(i) the function Lf ,k : (1,∞)k → (0,∞) defined by

Lf ,k (x1, . . . , xk) :=

k∑
j=1

f (xj)

f

(
k∏

j=1
xj

) , x1, . . . , xk ∈ (1,∞) ,

is a mean;

(ii) there is c > 0 such that

f (x) =
c

x
1

k−1

log x , x ∈ (1,∞) ;
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When Lf ,k is a mean? (2)

Theorem 7 (continuation)

(iii) Lf ,k is of the form

Lf ,k (x1, . . . xk) =

k∑
i=1

k−1

√
k∏

j=1,j 6=i

xj log xi

k∑
i=1

log xi

, x1, . . . , xk ∈ (1,∞) .

Remark

An analogous result for Lf ,k holds true on the domain (0, 1) .

The above mean for k = 2 belongs to the class of Beckenbach-Gini
means.
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When Pf ,k is a mean?

Theorem 6.

Let k ∈ N, k ≥ 2, be fixed and f : (1,∞)→ (0,∞) continuous. The
following conditions are equivalent:

(i) Pf ,k : (1,∞)k → (0,∞) defined by

Pf ,k (x1, . . . , xk) =
f (x1) · · · f (xk)

f (x1 · · · xk)
, x1, . . . , xk > 1.

is a translative mean;

(ii) there exists b ∈ R such that

f (x) = x−
log log x+b

k log k , x > 1;
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XIth Positivity, July 11-18, 2017, Edmonton 13

/ 28



When Pf ,k is a mean? (2)

Theorem 8 (continuation)

(iii) Pf ,k is of the form

Pf ,k (x1, . . . , xk) =

 k∏
j=1

x
log

log(x1·...·xk )
log xj

j

 1
k log k

, x1, . . . , xk > 1.
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A class of functions without means

Theorem 7.

Let k ∈ N, k ≥ 2, and a > 0 be fixed. There is no f : [a,∞)→ (0,∞)
such that the function Af ,k : [a,∞)k → (0,∞) defined by

Af ,k (x1, . . . , xk) :=

k∑
j=1

f (xj)

f

(
k∑

j=1
xj

) , x1, . . . , xk ≥ a,

or 1
Af ,k

is a mean.
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XIth Positivity, July 11-18, 2017, Edmonton 15

/ 28



Summary

Beta-type functions naturally generalize the Euler Beta function.

A two-variable beta-type function is a mean if, and only if, it is the
harmonic mean.

Beta-type functions of k-variables give a homogeneous mean, called
beta-type mean, which is neither harmonic nor quasi-arithmetic for
k ≥ 3.

Lf ,k and 1
Lf ,k

exhibit means related to Beckenbach-Gini means.

There exists a mean in terms of Pf ,k and 1
Pf ,k

.

There does not exist any mean of the form Af ,k or 1
Af ,k

.

Martin Himmel and Janusz Matkowski (University of Zielona Góra)Cauchy quotient means and their properties
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Properties of beta-type functions

Remark 1

Let k ∈ N, k ≥ 2; a ≥ 0, and I be as in the Definition 1, and let
f , g : I → (0,∞). The beta-type functions have the following properties:

(i) (equality) Bf ,k = Bg ,k iff there is a function e: R→ (0,∞) such
that g

f =e|I and e is exponential, i.e.

e (x + y) = e (x)e (y) , x , y ∈ R;

(ii) (multiplicativity) for all f , g : (a,∞)→ (0,∞),

Bf ·g ,k = Bf ,k · Bg ,k ;

(iii) for every f : (a,∞)→ (0,∞),

B 1
f
,k =

1

Bf ,k
.
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Properties of the beta-type mean

Question

What are properties of the k-variable
beta-type mean?
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Remark 2

Let k ∈ N, k ≥ 2 be fixed. The beta-type mean has the following
properties:
(i) Bk is homogeneous, i.e.

Bk (tx1, . . . , txk) = tBk (x1, . . . , xk) , x1, . . . , xk , t > 0.

(ii) Bk is quasi-arithmetic, i.e. there is a continuous and strictly
monotone function ϕ : (0,∞)→ R such that

Bk (x1, . . . xk) = ϕ−1

(
ϕ (x1) + ...+ ϕ (xk)

k

)
, x1, . . . , xk > 0,

if, and only if, k = 2. Moreover, for k = 2, this this equality holds true iff
ϕ (t) = a

t + b for some real a, b, a 6= 0, and B2 is the harmonic mean:

B2 (x , y) =
2xy

x + y
, x , y > 0.
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A characterization of Bk in the class of premeans of
beta-type

Using the Krull result on difference equations, employing some convexity
condition on f , it is possible to obtain another characterization of
beta-type premeans.

Theorem 8.

Let k ∈ N, k ≥ 2; and a ≥ 0 be fixed, and let I = (a,∞) , if a ≥ 0; or
I = [a,∞) , if a > 0. Assume that f : I → (0,∞) is differentiable and such
that the function f ′

f ◦ exp is convex. Then the following conditions are
equivalent
(i) the beta-type function Bf ,k is a premean in I ;
(ii) there is c ∈ R such that

f (x) = k
1

(k−1)2 k−1
√
xecx , x ∈ I ;

(iii) Bf ,k = Bk .
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Krull’s theorem on difference equations

Theorem 9.

Let a ≥ −∞ be arbitrarily fixed. Suppose that F : (a,∞)→ R is convex
or concave, and

lim
x→∞

[F (x + 1)− F (x)] = 0.

Then for every fixed (x0,, y0) ∈ (a,∞)× R there exists exactly one convex
or concave function ϕ : (a,∞)→ R satisfying the functional equation

ϕ (x + 1) = ϕ (x) + F (x) , x > a (4)

such that
ϕ (x0) = y0;

Martin Himmel and Janusz Matkowski (University of Zielona Góra)Cauchy quotient means and their properties
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Theorem 5

moreover, for all x > a,

ϕ (x) = y0 + (x − x0)F (x0) (5)

−
∞∑
n=0

{F (x + n)− F (x0 + n)− (x − x0) [F (x0 + n + 1)− F (x0 + n)]} .

Martin Himmel and Janusz Matkowski (University of Zielona Góra)Cauchy quotient means and their properties
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A second characterization of Bk

Applying the theory of iterative functional equations for functions of the
class Cn, we obtain another characterization of the k-variable beta-type
mean.

Theorem 10.

Let k ∈ N, k ≥ 2 be fixed. Assume that f : (0,∞)→ (0,∞) is of the
class C 2 and the function

(0,∞) 3 x 7−→ f (x)

x
1

k−1

has an extension to a class C 2 in the interval [0,∞).
Then the following conditions are equivalent
(i) the beta-type function Bf ,k is a premean in (0,∞) ;
(ii) there is c ∈ R such that

f (x) = k
1

(k−1)2 k−1
√
xecx , x > 0;
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Affine functions with respect to Bk

In the this result we determine the functions which are affine with respect
to the mean Bk for every k ∈ N, k ≥ 2.

Theorem 11.

A function f : (0,∞)→ (0,∞) is affine with respect to the family of
means {Bk : k ∈ N, k ≥ 2}, i.e.

f (Bk (x1, ..., xk)) = Bk (f (x1) , ..., f (x1)) , x1, ..., xk > 0; k ∈ N, k ≥ 2,

iff either f is linear, i.e. f (x) = f (1) x for all x > 0, or f is constant.

The proof relies on the fact that B2 = H is the harmonic mean, which is
quasi-arithmetic. The affine functions of quasi-arithmetic means are easy
to determine. The problem to find all functions f : (0,∞)→ (0,∞) which
are affine with respect to the beta-type mean Bk for a fixed k ∈ N, k ≥ 3,
remains open.
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Affine functions of a quasi-arithmetic mean

Remark 3

Let I ⊂ R be an interval and ϕ : I → R be one-to-one and onto. A
function f : I → R satisfies equation

f

(
ϕ−1

(
ϕ (x) + ϕ (y)

2

))
= ϕ−1

(
ϕ (f (x)) + ϕ (f (y))

2

)
, x , y ∈ I ,

if, and only if, there exist an additive function α : R→ R and b ∈ R such
that

f (x) = ϕ−1 (α (ϕ (x)) + b) , x ∈ I .
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Remark 4

A function f : (0,∞)→ (0,∞) is affine with respect to the mean B2, i.e.

f (B2 (x , y)) = B2 (f (x) , f (y)) , x , y > 0,

if, and only if, there exist p, q ≥ 0, p + q > 0, such that

f (x) =
x

p + qx
, x > 0.
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XIth Positivity, July 11-18, 2017, Edmonton 26

/ 28



Thank You for your attention
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